Diagnostic Performance of Deep Learning Models for Gastric Intestinal Metaplasia Detection in Narrow-band Images.

Miguel L Martins, Maria Pedroso, Diogo Libanio, Mario Dinis-Ribeiro, Miguel Coimbra, Francesco Renna
{"title":"Diagnostic Performance of Deep Learning Models for Gastric Intestinal Metaplasia Detection in Narrow-band Images.","authors":"Miguel L Martins, Maria Pedroso, Diogo Libanio, Mario Dinis-Ribeiro, Miguel Coimbra, Francesco Renna","doi":"10.1109/EMBC40787.2023.10340055","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric Intestinal Metaplasia (GIM) is one of the precancerous conditions in the gastric carcinogenesis cascade and its optical diagnosis during endoscopic screening is challenging even for seasoned endoscopists. Several solutions leveraging pre-trained deep neural networks (DNNs) have been recently proposed in order to assist human diagnosis. In this paper, we present a comparative study of these architectures in a new dataset containing GIM and non-GIM Narrow-band imaging still frames. We find that the surveyed DNNs perform remarkably well on average, but still measure sizeable inter-fold variability during cross-validation. An additional ad-hoc analysis suggests that these baseline architectures may not perform equally well at all scales when diagnosing GIM.Clinical relevance- Enhanching a clinician's ability to detect and localize intestinal metaplasia can be a crucial tool for gastric cancer management policies.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric Intestinal Metaplasia (GIM) is one of the precancerous conditions in the gastric carcinogenesis cascade and its optical diagnosis during endoscopic screening is challenging even for seasoned endoscopists. Several solutions leveraging pre-trained deep neural networks (DNNs) have been recently proposed in order to assist human diagnosis. In this paper, we present a comparative study of these architectures in a new dataset containing GIM and non-GIM Narrow-band imaging still frames. We find that the surveyed DNNs perform remarkably well on average, but still measure sizeable inter-fold variability during cross-validation. An additional ad-hoc analysis suggests that these baseline architectures may not perform equally well at all scales when diagnosing GIM.Clinical relevance- Enhanching a clinician's ability to detect and localize intestinal metaplasia can be a crucial tool for gastric cancer management policies.

深度学习模型在窄带图像中胃肠道增生检测中的诊断性能。
胃肠道增生(GIM)是胃癌发生级联过程中的癌前病变之一,即使对于经验丰富的内镜医师来说,在内镜筛查过程中对其进行光学诊断也是一项挑战。最近提出了几种利用预先训练好的深度神经网络(DNN)来辅助人类诊断的解决方案。在本文中,我们在一个包含 GIM 和非 GIM 窄带成像静帧的新数据集中对这些架构进行了比较研究。我们发现,所调查的 DNN 平均表现非常出色,但在交叉验证过程中仍会出现相当大的折叠间差异。额外的临时分析表明,在诊断 GIM 时,这些基线架构在所有尺度上的表现可能不尽相同。临床相关性--提高临床医生检测和定位肠化生的能力是胃癌管理政策的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信