Detecting Eye Disease Using Vision Transformers Informed by Ophthalmology Resident Gaze Data.

Shubham Kaushal, Yifan Sun, Ryan Zukerman, Royce W S Chen, Kaveri A Thakoor
{"title":"Detecting Eye Disease Using Vision Transformers Informed by Ophthalmology Resident Gaze Data<sup />.","authors":"Shubham Kaushal, Yifan Sun, Ryan Zukerman, Royce W S Chen, Kaveri A Thakoor","doi":"10.1109/EMBC40787.2023.10340746","DOIUrl":null,"url":null,"abstract":"<p><p>We showcase two proof-of-concept approaches for enhancing the Vision Transformer (ViT) model by integrating ophthalmology resident gaze data into its training. The resulting Fixation-Order-Informed ViT and Ophthalmologist-Gaze-Augmented ViT show greater accuracy and computational efficiency than ViT for detection of the eye disease, glaucoma.Clinical relevance- By enhancing glaucoma detection via our gaze-informed ViTs, we introduce a new paradigm for medical experts to directly interface with medical AI, leading the way for more accurate and interpretable AI 'teammates' in the ophthalmic clinic.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We showcase two proof-of-concept approaches for enhancing the Vision Transformer (ViT) model by integrating ophthalmology resident gaze data into its training. The resulting Fixation-Order-Informed ViT and Ophthalmologist-Gaze-Augmented ViT show greater accuracy and computational efficiency than ViT for detection of the eye disease, glaucoma.Clinical relevance- By enhancing glaucoma detection via our gaze-informed ViTs, we introduce a new paradigm for medical experts to directly interface with medical AI, leading the way for more accurate and interpretable AI 'teammates' in the ophthalmic clinic.

根据眼科住院医生的注视数据,利用视觉变换器检测眼疾。
我们展示了两种概念验证方法,通过将眼科住院医生的注视数据整合到视觉转换器(ViT)模型的训练中来增强该模型。临床相关性--通过我们的凝视信息 ViT 增强青光眼检测,我们为医学专家直接与医疗人工智能对接引入了一种新的范例,为眼科临床中更准确、更可解释的人工智能 "队友 "开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信