On the Impact of Synchronous Electrocardiogram Signals for Heart Sounds Segmentation.

Anibal Silva, Rafael Teixeira, Ricardo Fontes-Carvalho, Miguel Coimbra, Francesco Renna
{"title":"On the Impact of Synchronous Electrocardiogram Signals for Heart Sounds Segmentation.","authors":"Anibal Silva, Rafael Teixeira, Ricardo Fontes-Carvalho, Miguel Coimbra, Francesco Renna","doi":"10.1109/EMBC40787.2023.10341149","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we study the heart sound segmentation problem using Deep Neural Networks. The impact of available electrocardiogram (ECG) signals in addition to phonocardiogram (PCG) signals is evaluated. To incorporate ECG, two different models considered, which are built upon a 1D U-net - an early fusion one that fuses ECG in an early processing stage, and a late fusion one that averages the probabilities obtained by two networks applied independently on PCG and ECG data. Results show that, in contrast with traditional uses of ECG for PCG gating, early fusion of PCG and ECG information can provide more robust heart sound segmentation. As a proof of concept, we use the publicly available PhysioNet dataset. Validation results provide, on average, a sensitivity of 97.2%, 94.5%, and 95.6% and a Positive Predictive Value of 97.5%, 96.2%, and 96.1% for Early-fusion, Late-fusion, and unimodal (PCG only) models, respectively, showing the advantages of combining both signals at early stages to segment heart sounds.Clinical relevance- Cardiac auscultation is the first line of screening for cardiovascular diseases. Its low cost and simplicity are especially suitable for screening large populations in underprivileged countries. The proposed analysis and algorithm show the potential of effectively including electrocardiogram information to improve heart sound segmentation performance, thus enhancing the capacity of extracting useful information from heart sound recordings.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10341149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the heart sound segmentation problem using Deep Neural Networks. The impact of available electrocardiogram (ECG) signals in addition to phonocardiogram (PCG) signals is evaluated. To incorporate ECG, two different models considered, which are built upon a 1D U-net - an early fusion one that fuses ECG in an early processing stage, and a late fusion one that averages the probabilities obtained by two networks applied independently on PCG and ECG data. Results show that, in contrast with traditional uses of ECG for PCG gating, early fusion of PCG and ECG information can provide more robust heart sound segmentation. As a proof of concept, we use the publicly available PhysioNet dataset. Validation results provide, on average, a sensitivity of 97.2%, 94.5%, and 95.6% and a Positive Predictive Value of 97.5%, 96.2%, and 96.1% for Early-fusion, Late-fusion, and unimodal (PCG only) models, respectively, showing the advantages of combining both signals at early stages to segment heart sounds.Clinical relevance- Cardiac auscultation is the first line of screening for cardiovascular diseases. Its low cost and simplicity are especially suitable for screening large populations in underprivileged countries. The proposed analysis and algorithm show the potential of effectively including electrocardiogram information to improve heart sound segmentation performance, thus enhancing the capacity of extracting useful information from heart sound recordings.

论同步心电图信号对心音分割的影响
在本文中,我们使用深度神经网络研究了心音分割问题。我们评估了除心音图(PCG)信号外可用的心电图(ECG)信号的影响。为了将心电图纳入其中,考虑了两种不同的模型,它们都建立在一维 U 型网络的基础上,一种是早期融合模型,在早期处理阶段融合心电图;另一种是后期融合模型,将两个独立应用于 PCG 和心电图数据的网络获得的概率平均化。结果表明,与传统的使用心电图进行 PCG 门控相比,PCG 和心电图信息的早期融合能提供更稳健的心音分割。作为概念验证,我们使用了公开的 PhysioNet 数据集。验证结果表明,早期融合、晚期融合和单模态(仅 PCG)模型的灵敏度平均分别为 97.2%、94.5% 和 95.6%,阳性预测值分别为 97.5%、96.2% 和 96.1%,显示了在早期阶段结合两种信号来分割心音的优势。心脏听诊是心血管疾病筛查的第一道防线,其成本低、操作简单,尤其适合贫困国家的大量人群筛查。所提出的分析和算法显示了有效纳入心电图信息以提高心音分割性能的潜力,从而增强了从心音记录中提取有用信息的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信