Evolution of the visual system in ray-finned fishes.

IF 1.1 4区 医学 Q4 NEUROSCIENCES
Michael H Hofmann, Isabelle C Gebhardt
{"title":"Evolution of the visual system in ray-finned fishes.","authors":"Michael H Hofmann, Isabelle C Gebhardt","doi":"10.1017/S0952523823000020","DOIUrl":null,"url":null,"abstract":"<p><p>The vertebrate eye allows to capture an enormous amount of detail about the surrounding world which can only be exploited with sophisticated central information processing. Furthermore, vision is an active process due to head and eye movements that enables the animal to change the gaze and actively select objects to investigate in detail. The entire system requires a coordinated coevolution of its parts to work properly. Ray-finned fishes offer a unique opportunity to study the evolution of the visual system due to the high diversity in all of its parts. Here, we are bringing together information on retinal specializations (fovea), central visual centers (brain morphology studies), and eye movements in a large number of ray-finned fishes in a cladistic framework. The nucleus glomerulosus-inferior lobe system is well developed only in Acanthopterygii. A fovea, independent eye movements, and an enlargement of the nucleus glomerulosus-inferior lobe system coevolved at least five times independently within Acanthopterygii. This suggests that the nucleus glomerulosus-inferior lobe system is involved in advanced object recognition which is especially well developed in association with a fovea and independent eye movements. None of the non-Acanthopterygii have a fovea (except for some deep sea fish) or independent eye movements and they also lack important parts of the glomerulosus-inferior lobe system. This suggests that structures for advanced visual object recognition evolved within ray-finned fishes independent of the ones in tetrapods and non-ray-finned fishes as a result of a coevolution of retinal, central, and oculomotor structures.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"40 ","pages":"E005"},"PeriodicalIF":1.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523823000020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The vertebrate eye allows to capture an enormous amount of detail about the surrounding world which can only be exploited with sophisticated central information processing. Furthermore, vision is an active process due to head and eye movements that enables the animal to change the gaze and actively select objects to investigate in detail. The entire system requires a coordinated coevolution of its parts to work properly. Ray-finned fishes offer a unique opportunity to study the evolution of the visual system due to the high diversity in all of its parts. Here, we are bringing together information on retinal specializations (fovea), central visual centers (brain morphology studies), and eye movements in a large number of ray-finned fishes in a cladistic framework. The nucleus glomerulosus-inferior lobe system is well developed only in Acanthopterygii. A fovea, independent eye movements, and an enlargement of the nucleus glomerulosus-inferior lobe system coevolved at least five times independently within Acanthopterygii. This suggests that the nucleus glomerulosus-inferior lobe system is involved in advanced object recognition which is especially well developed in association with a fovea and independent eye movements. None of the non-Acanthopterygii have a fovea (except for some deep sea fish) or independent eye movements and they also lack important parts of the glomerulosus-inferior lobe system. This suggests that structures for advanced visual object recognition evolved within ray-finned fishes independent of the ones in tetrapods and non-ray-finned fishes as a result of a coevolution of retinal, central, and oculomotor structures.

魟鳍鱼类视觉系统的进化。
脊椎动物的眼睛能够捕捉到周围世界的大量细节,而这些细节只有通过复杂的中央信息处理才能加以利用。此外,由于头部和眼球的运动,视觉是一个主动的过程,使动物能够改变注视的方向,并主动选择要详细研究的对象。整个系统需要各部分协调共同进化才能正常工作。鳐形目鱼类视觉系统各部分的高度多样性为研究视觉系统的进化提供了一个独特的机会。在此,我们将大量鳐形目鱼类的视网膜特化(眼窝)、视觉中枢(脑形态学研究)和眼球运动的信息汇集到一个支系框架中。肾小球核-下叶系统仅在棘鱼类中发育良好。眼窝、独立的眼球运动和肾小球-下叶核系统的增大在翼手目中至少独立进化了五次。这表明,肾小球-下叶核系统参与了高级物体识别,而这种识别与眼窝和独立眼球运动密切相关。非鸟纲动物都没有眼窝(一些深海鱼类除外)或独立的眼球运动,它们也缺乏肾小球-下叶系统的重要部分。这表明,鳐形目鱼类高级视觉物体识别结构的进化是视网膜、中枢和眼球运动结构共同进化的结果,与四足类和非鳐形目鱼类的结构无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信