Arnold diffusion in Hamiltonian systems on infinite lattices

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Filippo Giuliani, Marcel Guardia
{"title":"Arnold diffusion in Hamiltonian systems on infinite lattices","authors":"Filippo Giuliani,&nbsp;Marcel Guardia","doi":"10.1002/cpa.22191","DOIUrl":null,"url":null,"abstract":"<p>We consider a system of infinitely many penduli on an <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-dimensional lattice with a weak coupling. For any prescribed path in the lattice, for suitable couplings, we construct orbits for this Hamiltonian system of infinite degrees of freedom which transfer energy between nearby penduli along the path. We allow the weak coupling to be next-to-nearest neighbor or long range as long as it is strongly decaying. The transfer of energy is given by an Arnold diffusion mechanism which relies on the original V. I Arnold approach: to construct a sequence of hyperbolic invariant quasi-periodic tori with transverse heteroclinic orbits. We implement this approach in an infinite dimensional setting, both in the space of bounded <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>m</mi>\n </msup>\n <annotation>$\\mathbb {Z}^m$</annotation>\n </semantics></math>-sequences and in spaces of decaying <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>m</mi>\n </msup>\n <annotation>$\\mathbb {Z}^m$</annotation>\n </semantics></math>-sequences. Key steps in the proof are an invariant manifold theory for hyperbolic tori and a Lambda Lemma for infinite dimensional coupled map lattices with decaying interaction.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22191","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a system of infinitely many penduli on an m $m$ -dimensional lattice with a weak coupling. For any prescribed path in the lattice, for suitable couplings, we construct orbits for this Hamiltonian system of infinite degrees of freedom which transfer energy between nearby penduli along the path. We allow the weak coupling to be next-to-nearest neighbor or long range as long as it is strongly decaying. The transfer of energy is given by an Arnold diffusion mechanism which relies on the original V. I Arnold approach: to construct a sequence of hyperbolic invariant quasi-periodic tori with transverse heteroclinic orbits. We implement this approach in an infinite dimensional setting, both in the space of bounded Z m $\mathbb {Z}^m$ -sequences and in spaces of decaying Z m $\mathbb {Z}^m$ -sequences. Key steps in the proof are an invariant manifold theory for hyperbolic tori and a Lambda Lemma for infinite dimensional coupled map lattices with decaying interaction.

无限网格上哈密尔顿系统中的阿诺德扩散
我们考虑在 m 维晶格上的一个无限多垂体系统,该系统具有弱耦合。对于晶格中的任何规定路径,只要有合适的耦合,我们就能为这个具有无限自由度的哈密顿系统构建轨道,在路径附近的垂体之间传递能量。我们允许弱耦合为近邻耦合或远距离耦合,只要它是强衰减的。能量转移由阿诺德扩散机制提供,该机制依赖于最初的 V. I. 阿诺德方法:构建一个具有横向异次元轨道的双曲不变准周期环序列。我们在有界 Zm$\mathbb {Z}^m$ 序列空间和衰变 Zm$\mathbb {Z}^m$ 序列空间的无限维环境中实现了这一方法。证明的关键步骤是双曲环的不变流形理论和具有衰变相互作用的无限维耦合映射网格的 Lambda Lemma。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信