Spike Solutions to the Supercritical Fractional Gierer–Meinhardt System

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Daniel Gomez, Markus De Medeiros, Jun-cheng Wei, Wen Yang
{"title":"Spike Solutions to the Supercritical Fractional Gierer–Meinhardt System","authors":"Daniel Gomez, Markus De Medeiros, Jun-cheng Wei, Wen Yang","doi":"10.1007/s00332-023-10002-6","DOIUrl":null,"url":null,"abstract":"<p>Localized solutions are known to arise in a variety of singularly perturbed reaction–diffusion systems. The Gierer–Meinhardt (GM) system is one such example and has been the focus of numerous rigorous and formal studies. A more recent focus has been the study of localized solutions in systems exhibiting anomalous diffusion, particularly with Lévy flights. In this paper, we investigate localized solutions to a one-dimensional fractional GM system for which the inhibitor’s fractional order is supercritical. Specifically, we assume the fractional orders of the activator and inhibitor are, respectively, in the ranges <span>\\(s_1\\in (1/4,1)\\)</span> and <span>\\(s_2\\in (0,1/2)\\)</span>. Using the method of matched asymptotic expansions, we reduce the construction of multi-spike solutions to solving a nonlinear algebraic system. The linear stability of the resulting multi-spike solutions is then addressed by studying a globally coupled eigenvalue problem. In addition to these formal results, we also rigorously establish the existence and stability of ground state solutions when the inhibitor’s fractional order is nearly critical. The fractional Green’s function, for which we present a rapidly converging series expansion, is prominently featured throughout both the formal and rigorous analysis in this paper. Moreover, we emphasize that the striking similarities between the one-dimensional supercritical GM system and the classical three-dimensional GM system can be attributed to the leading-order singular behaviour of the fractional Green’s function.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"236 1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10002-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Localized solutions are known to arise in a variety of singularly perturbed reaction–diffusion systems. The Gierer–Meinhardt (GM) system is one such example and has been the focus of numerous rigorous and formal studies. A more recent focus has been the study of localized solutions in systems exhibiting anomalous diffusion, particularly with Lévy flights. In this paper, we investigate localized solutions to a one-dimensional fractional GM system for which the inhibitor’s fractional order is supercritical. Specifically, we assume the fractional orders of the activator and inhibitor are, respectively, in the ranges \(s_1\in (1/4,1)\) and \(s_2\in (0,1/2)\). Using the method of matched asymptotic expansions, we reduce the construction of multi-spike solutions to solving a nonlinear algebraic system. The linear stability of the resulting multi-spike solutions is then addressed by studying a globally coupled eigenvalue problem. In addition to these formal results, we also rigorously establish the existence and stability of ground state solutions when the inhibitor’s fractional order is nearly critical. The fractional Green’s function, for which we present a rapidly converging series expansion, is prominently featured throughout both the formal and rigorous analysis in this paper. Moreover, we emphasize that the striking similarities between the one-dimensional supercritical GM system and the classical three-dimensional GM system can be attributed to the leading-order singular behaviour of the fractional Green’s function.

Abstract Image

超临界分式吉勒-梅因哈特系统的尖峰解决方案
众所周知,在各种奇异扰动反应扩散系统中都会出现局部解。Gierer-Meinhardt(GM)系统就是这样一个例子,也是众多严格和正式研究的焦点。最近的一个重点是研究表现出反常扩散的系统中的局部解,特别是具有莱维飞行的系统。在本文中,我们研究了抑制剂分数阶为超临界的一维分数 GM 系统的局部解。具体来说,我们假设激活剂和抑制剂的分数阶分别在 \(s_1\in (1/4,1)\) 和 \(s_2\in (0,1/2)\)范围内。利用匹配渐近展开法,我们将多尖峰解的构建简化为求解一个非线性代数系统。然后通过研究一个全局耦合特征值问题来解决所得到的多尖峰解的线性稳定性问题。除了这些形式上的结果,我们还严格确定了当抑制剂的分数阶接近临界时,基态解的存在性和稳定性。我们提出了一个快速收敛的数列展开,分数格林函数在本文的形式分析和严格分析中都占有突出地位。此外,我们还强调,一维超临界 GM 系统与经典三维 GM 系统之间的惊人相似性可归因于分数格林函数的前导阶奇异行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信