On the boundaries of highly connected, almost closed manifolds

IF 4.9 1区 数学 Q1 MATHEMATICS
Robert Burklund, Jeremy Hahn, Andrew Senger
{"title":"On the boundaries of highly connected, almost closed manifolds","authors":"Robert Burklund, Jeremy Hahn, Andrew Senger","doi":"10.4310/acta.2023.v231.n2.a1","DOIUrl":null,"url":null,"abstract":"Building on work of Stolz, we prove for integers $0 \\leqslant d \\leqslant 3$ and $k \\gt 232$ that the boundaries of $(k-1)$-connected, almost closed $(2k+d)$-manifolds also bound parallelizable manifolds. Away from finitely many dimensions, this settles longstanding questions of C.T.C. Wall, determines all Stein fillable homotopy spheres, and proves a conjecture of Galatius and Randal–Williams. Implications are drawn for both the classification of highly connected manifolds and, via work of Kreck and Krannich, the calculation of their mapping class groups. Our technique is to recast the Galatius and Randal–Williams conjecture in terms of the vanishing of a certain Toda bracket, and then to analyze this Toda bracket by bounding its $\\mathrm{H}\\mathbb{F}_p$-Adams filtrations for all primes $p$. We additionally prove new vanishing lines in the $\\mathrm{H}\\mathbb{F}_p$-Adams spectral sequences of spheres and Moore spectra, which are likely to be of independent interest. Several of these vanishing lines rely on an Appendix by Robert Burklund, which answers a question of Mathew about vanishing curves in $\\mathrm{BP}{\\langle n \\rangle}$-based Adams spectral sequences.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2023.v231.n2.a1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Building on work of Stolz, we prove for integers $0 \leqslant d \leqslant 3$ and $k \gt 232$ that the boundaries of $(k-1)$-connected, almost closed $(2k+d)$-manifolds also bound parallelizable manifolds. Away from finitely many dimensions, this settles longstanding questions of C.T.C. Wall, determines all Stein fillable homotopy spheres, and proves a conjecture of Galatius and Randal–Williams. Implications are drawn for both the classification of highly connected manifolds and, via work of Kreck and Krannich, the calculation of their mapping class groups. Our technique is to recast the Galatius and Randal–Williams conjecture in terms of the vanishing of a certain Toda bracket, and then to analyze this Toda bracket by bounding its $\mathrm{H}\mathbb{F}_p$-Adams filtrations for all primes $p$. We additionally prove new vanishing lines in the $\mathrm{H}\mathbb{F}_p$-Adams spectral sequences of spheres and Moore spectra, which are likely to be of independent interest. Several of these vanishing lines rely on an Appendix by Robert Burklund, which answers a question of Mathew about vanishing curves in $\mathrm{BP}{\langle n \rangle}$-based Adams spectral sequences.
关于高度连接的几乎封闭流形的边界
在斯托尔兹工作的基础上,我们证明了对于整数$0 \leqslant d \leqslant 3$和$k \gt 232$,$(k-1)$连接的、几乎封闭的$(2k+d)$流形的边界也是可平行流形的边界。在有限多维之外,这解决了华尔(C.T.C. Wall)的长期问题,确定了所有斯坦因可填充同调球,并证明了加拉蒂乌斯和兰道尔-威廉姆斯的猜想。这对高连接流形的分类以及通过克雷克和克兰尼奇的工作计算其映射类群都有意义。我们的技术是用某个托达括号的消失来重构加拉蒂乌斯和兰道尔-威廉斯猜想,然后通过限定所有素数 $p$ 的 $\mathrm{H}\mathbb{F}_p$-Adams 滤波来分析这个托达括号。此外,我们还证明了球面和摩尔谱的 $\mathrm{H}\mathbb{F}_p$-Adams 谱序列中的新消失线,这些消失线很可能具有独立的意义。其中几条消失线依赖于罗伯特-伯克伦(Robert Burklund)的附录,该附录回答了马修关于基于 $\mathrm{BP}{langle n \rangle}$ 的亚当斯谱序列中的消失曲线的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信