Mixed-integer exponential conic optimization for reliability enhancement of power distribution systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Milad Dehghani Filabadi, Chen Chen, Antonio Conejo
{"title":"Mixed-integer exponential conic optimization for reliability enhancement of power distribution systems","authors":"Milad Dehghani Filabadi, Chen Chen, Antonio Conejo","doi":"10.1007/s11081-023-09876-y","DOIUrl":null,"url":null,"abstract":"<p>This paper develops an optimization model for determining the placement of switches, tie lines, and underground cables in order to enhance the reliability of an electric power distribution system. A central novelty in the model is the inclusion of nodal reliability constraints, which consider network topology and are important in practice. The model can be reformulated either as a mixed-integer exponential conic optimization problem or as a mixed-integer linear program. We demonstrate both theoretically and empirically that the judicious application of <i>partial</i> linearization is key to rendering a practically tractable formulation. Computational studies indicate that realistic instances can indeed be solved in a reasonable amount of time on standard hardware.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-023-09876-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops an optimization model for determining the placement of switches, tie lines, and underground cables in order to enhance the reliability of an electric power distribution system. A central novelty in the model is the inclusion of nodal reliability constraints, which consider network topology and are important in practice. The model can be reformulated either as a mixed-integer exponential conic optimization problem or as a mixed-integer linear program. We demonstrate both theoretically and empirically that the judicious application of partial linearization is key to rendering a practically tractable formulation. Computational studies indicate that realistic instances can indeed be solved in a reasonable amount of time on standard hardware.

Abstract Image

提高配电系统可靠性的混合整数指数圆锥优化法
本文建立了一个优化模型,用于确定开关、连接线和地下电缆的位置,以提高配电系统的可靠性。该模型的一个核心创新点是加入了节点可靠性约束条件,这些约束条件考虑了网络拓扑结构,在实际应用中非常重要。该模型既可以重新表述为混合整数指数圆锥优化问题,也可以表述为混合整数线性程序。我们从理论和经验两方面证明,明智地应用部分线性化是实现实际可操作性的关键。计算研究表明,在标准硬件上确实可以在合理的时间内解决现实的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信