Numerical Computation of Dark Solitons of a Nonlocal Nonlinear Schrödinger Equation

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
André de Laire, Guillaume Dujardin, Salvador López-Martínez
{"title":"Numerical Computation of Dark Solitons of a Nonlocal Nonlinear Schrödinger Equation","authors":"André de Laire, Guillaume Dujardin, Salvador López-Martínez","doi":"10.1007/s00332-023-10001-7","DOIUrl":null,"url":null,"abstract":"<p>The existence and decay properties of dark solitons for a large class of nonlinear nonlocal Gross–Pitaevskii equations with nonzero boundary conditions in dimension one has been established recently (de Laire and López-Martínez in Commun Partial Differ Equ 47(9):1732–1794, 2022). Mathematically, these solitons correspond to minimizers of the energy at fixed momentum and are orbitally stable. This paper provides a numerical method to compute approximations of such solitons for these types of equations, and provides actual numerical experiments for several types of physically relevant nonlocal potentials. These simulations allow us to obtain a variety of dark solitons, and to comment on their shapes in terms of the parameters of the nonlocal potential. In particular, they suggest that, given the dispersion relation, the speed of sound and the Landau speed are important values to understand the properties of these dark solitons. They also allow us to test the necessity of some sufficient conditions in the theoretical result proving existence of the dark solitons.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"16 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10001-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The existence and decay properties of dark solitons for a large class of nonlinear nonlocal Gross–Pitaevskii equations with nonzero boundary conditions in dimension one has been established recently (de Laire and López-Martínez in Commun Partial Differ Equ 47(9):1732–1794, 2022). Mathematically, these solitons correspond to minimizers of the energy at fixed momentum and are orbitally stable. This paper provides a numerical method to compute approximations of such solitons for these types of equations, and provides actual numerical experiments for several types of physically relevant nonlocal potentials. These simulations allow us to obtain a variety of dark solitons, and to comment on their shapes in terms of the parameters of the nonlocal potential. In particular, they suggest that, given the dispersion relation, the speed of sound and the Landau speed are important values to understand the properties of these dark solitons. They also allow us to test the necessity of some sufficient conditions in the theoretical result proving existence of the dark solitons.

Abstract Image

非局部非线性薛定谔方程暗孤子的数值计算
对于一大类具有一维非零边界条件的非线性非局部格罗斯-皮塔耶夫斯基方程,暗孤子的存在和衰变特性最近已被证实(de Laire 和 López-Martínez 在 Commun Partial Differ Equ 47(9):1732-1794, 2022 中)。从数学上讲,这些孤子对应于固定动量下的能量最小值,并且在轨道上是稳定的。本文提供了一种数值方法来计算这类方程的孤子近似值,并提供了几类物理相关的非局部势的实际数值实验。通过这些模拟,我们获得了各种暗孤子,并根据非局部势的参数对它们的形状进行了评述。特别是,它们表明,考虑到色散关系,声速和朗道速度是理解这些暗孤子特性的重要数值。它们还允许我们检验证明暗孤子存在的理论结果中某些充分条件的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信