Approximate Controllability for Hilfer Fractional Stochastic Non-instantaneous Impulsive Differential System with Rosenblatt Process and Poisson Jumps

IF 1.9 3区 数学 Q1 MATHEMATICS
G. Gokul, R. Udhayakumar
{"title":"Approximate Controllability for Hilfer Fractional Stochastic Non-instantaneous Impulsive Differential System with Rosenblatt Process and Poisson Jumps","authors":"G. Gokul, R. Udhayakumar","doi":"10.1007/s12346-023-00912-x","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses the approximate controllability of Hilfer fractional stochastic differential system involving non-instantaneous impulses with Rosenblatt process and Poisson jumps. By utilising stochastic analysis, semigroup theory, fractional calculus, and Krasnoselskii’s fixed point theorem, we prove our primary outcomes. Firstly, we prove the approximate controllability of the Hilfer fractional system. As a final step, we provide an example to highlight our discussion.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"9 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00912-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the approximate controllability of Hilfer fractional stochastic differential system involving non-instantaneous impulses with Rosenblatt process and Poisson jumps. By utilising stochastic analysis, semigroup theory, fractional calculus, and Krasnoselskii’s fixed point theorem, we prove our primary outcomes. Firstly, we prove the approximate controllability of the Hilfer fractional system. As a final step, we provide an example to highlight our discussion.

具有罗森布拉特过程和泊松跳跃的希尔费分数随机非瞬时脉冲微分系统的近似可控性
本文讨论了涉及罗森布拉特过程和泊松跳跃的非瞬时脉冲的希尔费分数随机微分系统的近似可控性。通过利用随机分析、半群理论、分数微积分和 Krasnoselskii 定点定理,我们证明了我们的主要成果。首先,我们证明了 Hilfer 分式系统的近似可控性。最后,我们提供一个例子来突出我们的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信