A solvable two-dimensional swarmalator mode

Kevin O'Keeffe, Gourab Kumar Sar, Md Sayeed Anwar, Joao U. F. Lizárraga, Marcus A. M. de Aguiar, Dibakar Ghosh
{"title":"A solvable two-dimensional swarmalator mode","authors":"Kevin O'Keeffe, Gourab Kumar Sar, Md Sayeed Anwar, Joao U. F. Lizárraga, Marcus A. M. de Aguiar, Dibakar Ghosh","doi":"arxiv-2312.10178","DOIUrl":null,"url":null,"abstract":"Swarmalators are oscillators that swarm through space as they synchronize in\ntime. Introduced a few years ago to model many systems which mix synchrony with\nself-assembly, they remain poorly understood theoretically. Here we obtain the\nfirst analytic results on swarmalators moving in two-dimensional (2D) plane by\nenforcing periodic boundary conditions; this simpler topology allows\nexpressions for order parameters, stabilities, and bifurcations to be derived\nexactly. We suggest some future directions for swarmalator research and point\nout some connections to the Kuramoto model and the Vicsek model from active\nmatter; these are intended as a call-to-arms for the sync community and other\nresearchers looking for new problems and puzzles to work on.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.10178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Swarmalators are oscillators that swarm through space as they synchronize in time. Introduced a few years ago to model many systems which mix synchrony with self-assembly, they remain poorly understood theoretically. Here we obtain the first analytic results on swarmalators moving in two-dimensional (2D) plane by enforcing periodic boundary conditions; this simpler topology allows expressions for order parameters, stabilities, and bifurcations to be derived exactly. We suggest some future directions for swarmalator research and point out some connections to the Kuramoto model and the Vicsek model from active matter; these are intended as a call-to-arms for the sync community and other researchers looking for new problems and puzzles to work on.
可求解的二维蜂群模式
蜂群器是一种振荡器,它们在时间上同步时会在空间中蜂拥而至。几年前,蜂群振荡器被引入到许多混合同步与自组装的系统建模中,但人们对它们的理论了解仍然很少。在这里,我们通过强化周期性边界条件,首次获得了关于在二维(2D)平面上运动的蜂群的解析结果;这种更简单的拓扑结构允许精确推导出阶参数、稳定性和分岔的表达式。我们提出了一些蜂群器研究的未来方向,并指出了与仓本模型和活性物质 Vicsek 模型的一些联系;这些都是为了呼吁同步界和其他研究人员寻找新的问题和谜题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信