{"title":"Gradient profile for the reconnection of vortex lines with the boundary in type-II superconductors","authors":"Yi C. Huang, Hatem Zaag","doi":"10.1007/s00028-023-00932-9","DOIUrl":null,"url":null,"abstract":"<p>In a recent work, Duong, Ghoul and Zaag determined the gradient profile for blowup solutions of standard semilinear heat equation with power nonlinearities in the (supposed to be) generic case. Their method refines the constructive techniques introduced by Bricmont and Kupiainen and further developed by Merle and Zaag. In this paper, we extend their refinement to the problem about the reconnection of vortex lines with the boundary in a type-II superconductor under planar approximation, a physical model derived by Chapman, Hunton and Ockendon featuring the finite time quenching for the nonlinear heat equation </p><span>$$\\begin{aligned} \\frac{\\partial h}{\\partial t}=\\frac{\\partial ^2 h}{\\partial x^2}+e^{-h}-\\frac{1}{h^\\beta },\\quad \\beta >0 \\end{aligned}$$</span><p>subject to initial boundary value conditions </p><span>$$\\begin{aligned} h(\\cdot ,0)=h_0>0,\\quad h(\\pm 1,t)=1. \\end{aligned}$$</span><p>We derive the intermediate extinction profile with refined asymptotics, and with extinction time <i>T</i> and extinction point 0, the gradient profile behaves as <span>\\(x\\rightarrow 0\\)</span> like </p><span>$$\\begin{aligned} \\lim _{t\\rightarrow T}\\,(\\nabla h)(x,t)\\quad \\sim \\quad \\frac{1}{\\sqrt{2\\beta }}\\frac{x}{|x|}\\frac{1}{\\sqrt{|\\log |x||}} \\left[ \\frac{(\\beta +1)^2}{8\\beta }\\frac{|x|^2}{|\\log |x||}\\right] ^{\\frac{1}{\\beta +1}-\\frac{1}{2}}, \\end{aligned}$$</span><p>agreeing with the gradient of the extinction profile previously derived by Merle and Zaag. Our result holds with general boundary conditions and in higher dimensions.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00932-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a recent work, Duong, Ghoul and Zaag determined the gradient profile for blowup solutions of standard semilinear heat equation with power nonlinearities in the (supposed to be) generic case. Their method refines the constructive techniques introduced by Bricmont and Kupiainen and further developed by Merle and Zaag. In this paper, we extend their refinement to the problem about the reconnection of vortex lines with the boundary in a type-II superconductor under planar approximation, a physical model derived by Chapman, Hunton and Ockendon featuring the finite time quenching for the nonlinear heat equation
We derive the intermediate extinction profile with refined asymptotics, and with extinction time T and extinction point 0, the gradient profile behaves as \(x\rightarrow 0\) like
agreeing with the gradient of the extinction profile previously derived by Merle and Zaag. Our result holds with general boundary conditions and in higher dimensions.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators