A Lower Bound on Complexity of a Locator Cellular Automaton Solution for the Closest Neighbor Search Problem

IF 0.2 Q4 MATHEMATICS
D. I. Vasilev, E. E. Gasanov
{"title":"A Lower Bound on Complexity of a Locator Cellular Automaton Solution for the Closest Neighbor Search Problem","authors":"D. I. Vasilev, E. E. Gasanov","doi":"10.3103/s0027132223050078","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper considers the application of the locator cellular automaton model to the closest neighbor search problem. The locator cellular automaton model assumes the possibility for each cell to translate a signal through any distance using the ether. It was proven earlier that the ether model allows solving the problem with logarithmic time. In this paper we have derived a logarithmic lower bound for this problem.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":"3 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132223050078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the application of the locator cellular automaton model to the closest neighbor search problem. The locator cellular automaton model assumes the possibility for each cell to translate a signal through any distance using the ether. It was proven earlier that the ether model allows solving the problem with logarithmic time. In this paper we have derived a logarithmic lower bound for this problem.

近邻搜索问题的定位蜂窝自动机解法复杂度下限
摘要 本文研究了定位器蜂窝自动机模型在近邻搜索问题中的应用。定位器蜂窝自动机模型假定每个蜂窝都有可能利用乙醚在任意距离内转换信号。早先的研究证明,乙醚模型可以用对数时间解决问题。在本文中,我们推导出了该问题的对数下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信