{"title":"A Lower Bound on Complexity of a Locator Cellular Automaton Solution for the Closest Neighbor Search Problem","authors":"D. I. Vasilev, E. E. Gasanov","doi":"10.3103/s0027132223050078","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper considers the application of the locator cellular automaton model to the closest neighbor search problem. The locator cellular automaton model assumes the possibility for each cell to translate a signal through any distance using the ether. It was proven earlier that the ether model allows solving the problem with logarithmic time. In this paper we have derived a logarithmic lower bound for this problem.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":"3 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132223050078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers the application of the locator cellular automaton model to the closest neighbor search problem. The locator cellular automaton model assumes the possibility for each cell to translate a signal through any distance using the ether. It was proven earlier that the ether model allows solving the problem with logarithmic time. In this paper we have derived a logarithmic lower bound for this problem.
期刊介绍:
Moscow University Mathematics Bulletin is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.