Yulai Ma, Davide Mattiolo, Eckhard Steffen, Isaak H. Wolf
{"title":"Edge-Connectivity and Pairwise Disjoint Perfect Matchings in Regular Graphs","authors":"Yulai Ma, Davide Mattiolo, Eckhard Steffen, Isaak H. Wolf","doi":"10.1007/s00493-023-00078-9","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(0 \\le t \\le r\\)</span> let <i>m</i>(<i>t</i>, <i>r</i>) be the maximum number <i>s</i> such that every <i>t</i>-edge-connected <i>r</i>-graph has <i>s</i> pairwise disjoint perfect matchings. There are only a few values of <i>m</i>(<i>t</i>, <i>r</i>) known, for instance <span>\\(m(3,3)=m(4,r)=1\\)</span>, and <span>\\(m(t,r) \\le r-2\\)</span> for all <span>\\(t \\not = 5\\)</span>, and <span>\\(m(t,r) \\le r-3\\)</span> if <i>r</i> is even. We prove that <span>\\(m(2l,r) \\le 3l - 6\\)</span> for every <span>\\(l \\ge 3\\)</span> and <span>\\(r \\ge 2 l\\)</span>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"38 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00078-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For \(0 \le t \le r\) let m(t, r) be the maximum number s such that every t-edge-connected r-graph has s pairwise disjoint perfect matchings. There are only a few values of m(t, r) known, for instance \(m(3,3)=m(4,r)=1\), and \(m(t,r) \le r-2\) for all \(t \not = 5\), and \(m(t,r) \le r-3\) if r is even. We prove that \(m(2l,r) \le 3l - 6\) for every \(l \ge 3\) and \(r \ge 2 l\).
对于(0 \le t \le r\),让 m(t, r) 是最大的数 s,使得每个 t 边连接的 r 图都有 s 个成双成对的完美匹配。m(t,r)只有少数几个已知值,例如:(m(3,3)=m(4,r)=1),在所有(t不=5)的情况下(m(t,r) (le r-2),如果r是偶数,则(m(t,r) (le r-3)。我们证明,对于每一个l和r来说,m(2l,r)都是3l-6。
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.