Disrupted organization of dynamic functional networks with application in epileptic seizure recognition

Tahmineh Azizi
{"title":"Disrupted organization of dynamic functional networks with application in epileptic seizure recognition","authors":"Tahmineh Azizi","doi":"10.1016/j.neuri.2023.100153","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, characterizing the dynamics of brain functional networks at task free or cognitive tasks has developed different research efforts in the field of neuroscience. Epilepsy is an electrophysiological brain disease which is accompanied by recurrent seizures. Seizure and epilepsy detection is a main challenge in the field of neuroscience. Understanding the underlying mechanism of epilepsy and transition from a normal brain to epileptic brain crucial for the diagnosis and treatment purposes. To understand the organization of epileptic brain network functions at large scales, electroencephalogram (EEG) signals measure and record the changes in electrical activity and functional connectivity. Time frequency analysis and continuous spectral entropy are well developed methods which reveal dynamical aspects of brain activity and can analyze the transitions in intrinsic brain activity. In this work, we aim to model the dynamics of EEG signals of epileptic brain and characterize their dynamical patterns. We use Time frequency analysis to capture the alterations in the structure of EEG signals from patients with seizure. Continuous spectral entropy is used to detect the start of seizures. The main purpose of the current is to explore the changes in the organization of epileptic brain networks. Using time frequency techniques, we are able to draw a big picture of how the brain functions before and during seizure and step forward to classify seizure and corresponding brain activity during different stages of epilepsy. The present study may contribute to characterizing the complex non-linear dynamics of EEG signals of epileptic brain and further assists with biomarker detection for different clinical applications. This finding helps towards effective diagnosis and better treatment of epilepsy.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"4 1","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772528623000389/pdfft?md5=fb1762b49e7db456bd912b35c9f9e486&pid=1-s2.0-S2772528623000389-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528623000389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, characterizing the dynamics of brain functional networks at task free or cognitive tasks has developed different research efforts in the field of neuroscience. Epilepsy is an electrophysiological brain disease which is accompanied by recurrent seizures. Seizure and epilepsy detection is a main challenge in the field of neuroscience. Understanding the underlying mechanism of epilepsy and transition from a normal brain to epileptic brain crucial for the diagnosis and treatment purposes. To understand the organization of epileptic brain network functions at large scales, electroencephalogram (EEG) signals measure and record the changes in electrical activity and functional connectivity. Time frequency analysis and continuous spectral entropy are well developed methods which reveal dynamical aspects of brain activity and can analyze the transitions in intrinsic brain activity. In this work, we aim to model the dynamics of EEG signals of epileptic brain and characterize their dynamical patterns. We use Time frequency analysis to capture the alterations in the structure of EEG signals from patients with seizure. Continuous spectral entropy is used to detect the start of seizures. The main purpose of the current is to explore the changes in the organization of epileptic brain networks. Using time frequency techniques, we are able to draw a big picture of how the brain functions before and during seizure and step forward to classify seizure and corresponding brain activity during different stages of epilepsy. The present study may contribute to characterizing the complex non-linear dynamics of EEG signals of epileptic brain and further assists with biomarker detection for different clinical applications. This finding helps towards effective diagnosis and better treatment of epilepsy.

Abstract Image

动态功能网络的中断组织及其在癫痫发作识别中的应用
最近,在神经科学领域,对无任务或认知任务中大脑功能网络的动态特性开展了不同的研究工作。癫痫是一种伴随反复发作的脑电生理疾病。癫痫发作和癫痫检测是神经科学领域的主要挑战。了解癫痫的基本机制以及从正常大脑到癫痫大脑的转变对诊断和治疗至关重要。为了解大尺度癫痫脑网络功能的组织,脑电图(EEG)信号测量并记录电活动和功能连接的变化。时间频率分析和连续频谱熵是一种成熟的方法,可揭示大脑活动的动态方面,并能分析内在大脑活动的转变。在这项工作中,我们旨在建立癫痫患者脑电图信号的动态模型,并描述其动态模式。我们使用时频分析来捕捉癫痫发作患者脑电图信号结构的变化。连续频谱熵用于检测癫痫发作的起始时间。当前的主要目的是探索癫痫患者大脑网络组织的变化。利用时频技术,我们能够描绘出癫痫发作前和发作时大脑功能的全貌,并进而对癫痫不同阶段的发作和相应的大脑活动进行分类。本研究有助于描述癫痫患者脑电图信号的复杂非线性动态特性,并进一步协助不同临床应用的生物标记检测。这一发现有助于有效诊断和更好地治疗癫痫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信