{"title":"Biomimetic oculomotor control with spiking neural networks","authors":"Taasin Saquib, Demetri Terzopoulos","doi":"10.1007/s00138-023-01494-z","DOIUrl":null,"url":null,"abstract":"<p>Spiking neural networks (SNNs) are comprised of artificial neurons that, like their biological counterparts, communicate via electrical spikes. SNNs have been hailed as the next wave of deep learning as they promise low latency and low-power consumption when run on neuromorphic hardware. Current deep neural network models for computer vision often require power-hungry GPUs to train and run, making them great candidates to replace with SNNs. We develop and train a biomimetic, SNN-driven, neuromuscular oculomotor controller for a realistic biomechanical model of the human eye. Inspired by the ON and OFF bipolar cells of the retina, we use event-based data flow in the SNN to direct the necessary extraocular muscle-driven eye movements. We train our SNN models from scratch, using modified deep learning techniques. Classification tasks are straightforward to implement with SNNs and have received the most research attention, but visual tracking is a regression task. We use surrogate gradients and introduce a linear layer to convert membrane voltages from the final spiking layer into the desired outputs. Our SNN foveation network enhances the biomimetic properties of the virtual eye model and enables it to perform reliable visual tracking. Overall, with event-based data processed by an SNN, our oculomotor controller successfully tracks a visual target while activating 87.3% fewer neurons than a conventional neural network.\n</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"226 1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-023-01494-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Spiking neural networks (SNNs) are comprised of artificial neurons that, like their biological counterparts, communicate via electrical spikes. SNNs have been hailed as the next wave of deep learning as they promise low latency and low-power consumption when run on neuromorphic hardware. Current deep neural network models for computer vision often require power-hungry GPUs to train and run, making them great candidates to replace with SNNs. We develop and train a biomimetic, SNN-driven, neuromuscular oculomotor controller for a realistic biomechanical model of the human eye. Inspired by the ON and OFF bipolar cells of the retina, we use event-based data flow in the SNN to direct the necessary extraocular muscle-driven eye movements. We train our SNN models from scratch, using modified deep learning techniques. Classification tasks are straightforward to implement with SNNs and have received the most research attention, but visual tracking is a regression task. We use surrogate gradients and introduce a linear layer to convert membrane voltages from the final spiking layer into the desired outputs. Our SNN foveation network enhances the biomimetic properties of the virtual eye model and enables it to perform reliable visual tracking. Overall, with event-based data processed by an SNN, our oculomotor controller successfully tracks a visual target while activating 87.3% fewer neurons than a conventional neural network.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.