{"title":"Numerical Study on Cavitation Characteristics of Multi-channel Venturi Nozzle","authors":"","doi":"10.1007/s40997-023-00735-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Hydrodynamic cavitation is a prevalent phenomenon within fluid dynamics, offering substantial advantages in various engineering applications. The alteration of cavitation venturi structure and the augmentation of hydrodynamic cavitation intensity have long represented a dynamic research domain. In this context, we introduce a novel cavitation venturi design with the explicit aim of amplifying cavitation intensity by expanding the flow channel within the venturi nozzle. In this study, we conducted a comprehensive analysis of the flow characteristics inside the nozzle using large eddy simulation and numerical simulation with the Zwart cavitation model. We compared the cavitation evolution process of two distinct nozzles under specific conditions: inlet pressure ranging from 0.2 to 0.6 MPa and a transient time interval of 0–1 ms. Additionally, we evaluated the average steam volume fraction within the nozzle. The numerical results demonstrate that, when subjected to identical boundary conditions, the multi-channel venturi nozzle exhibits a greater capacity to generate steam volume, consequently amplifying the cavitation energy produced at the nozzle outlet and intensifying cavitation. The results of our research provide a crucial reference for the design of nozzles in various engineering applications.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00735-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrodynamic cavitation is a prevalent phenomenon within fluid dynamics, offering substantial advantages in various engineering applications. The alteration of cavitation venturi structure and the augmentation of hydrodynamic cavitation intensity have long represented a dynamic research domain. In this context, we introduce a novel cavitation venturi design with the explicit aim of amplifying cavitation intensity by expanding the flow channel within the venturi nozzle. In this study, we conducted a comprehensive analysis of the flow characteristics inside the nozzle using large eddy simulation and numerical simulation with the Zwart cavitation model. We compared the cavitation evolution process of two distinct nozzles under specific conditions: inlet pressure ranging from 0.2 to 0.6 MPa and a transient time interval of 0–1 ms. Additionally, we evaluated the average steam volume fraction within the nozzle. The numerical results demonstrate that, when subjected to identical boundary conditions, the multi-channel venturi nozzle exhibits a greater capacity to generate steam volume, consequently amplifying the cavitation energy produced at the nozzle outlet and intensifying cavitation. The results of our research provide a crucial reference for the design of nozzles in various engineering applications.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.