{"title":"Coalescence and sampling distributions for Feller diffusions","authors":"Conrad J. Burden , Robert C. Griffiths","doi":"10.1016/j.tpb.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the diffusion process defined by the forward equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mrow><mo>{</mo><mi>x</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>−</mo><mi>α</mi><msub><mrow><mrow><mo>{</mo><mi>x</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> for <span><math><mrow><mi>t</mi><mo>,</mo><mi>x</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mo>−</mo><mi>∞</mi><mo><</mo><mi>α</mi><mo><</mo><mi>∞</mi></mrow></math></span>, with an initial condition <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>δ</mi><mrow><mo>(</mo><mi>x</mi><mo>−</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. This equation was introduced and solved by Feller to model the growth of a population of independently reproducing individuals. We explore important coalescent processes related to Feller’s solution. For any <span><math><mi>α</mi></math></span> and <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> we calculate the distribution of the random variable <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>s</mi><mo>;</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, defined as the finite number of ancestors at a time <span><math><mi>s</mi></math></span> in the past of a sample of size <span><math><mi>n</mi></math></span> taken from the infinite population of a Feller diffusion at a time <span><math><mi>t</mi></math></span> since its initiation. In a subcritical diffusion we find the distribution of population and sample coalescent trees from time <span><math><mi>t</mi></math></span> back, conditional on non-extinction as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. In a supercritical diffusion we construct a coalescent tree which has a single founder and derive the distribution of coalescent times.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"155 ","pages":"Pages 67-76"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S004058092300076X/pdfft?md5=8e598e52b975ba69c518b1ea3087110e&pid=1-s2.0-S004058092300076X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004058092300076X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Consider the diffusion process defined by the forward equation for and , with an initial condition . This equation was introduced and solved by Feller to model the growth of a population of independently reproducing individuals. We explore important coalescent processes related to Feller’s solution. For any and we calculate the distribution of the random variable , defined as the finite number of ancestors at a time in the past of a sample of size taken from the infinite population of a Feller diffusion at a time since its initiation. In a subcritical diffusion we find the distribution of population and sample coalescent trees from time back, conditional on non-extinction as . In a supercritical diffusion we construct a coalescent tree which has a single founder and derive the distribution of coalescent times.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.