{"title":"An iterative algorithm for low-rank tensor completion problem with sparse noise and missing values","authors":"Jianheng Chen, Wen Huang","doi":"10.1002/nla.2544","DOIUrl":null,"url":null,"abstract":"Robust low-rank tensor completion plays an important role in multidimensional data analysis against different degradations, such as sparse noise, and missing entries, and has a variety of applications in image processing and computer vision. In this paper, an optimization model for low-rank tensor completion problems is proposed and a block coordinate descent algorithm is developed to solve this model. It is shown that for one of the subproblems, the closed-form solution exists and for the other, a Riemannian conjugate gradient algorithm is used. In particular, when all elements are known, that is, no missing values, the block coordinate descent is simplified in the sense that both subproblems have closed-form solutions. The convergence analysis is established without requiring the latter subproblem to be solved exactly. Numerical experiments illustrate that the proposed model with the algorithm is feasible and effective.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2544","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Robust low-rank tensor completion plays an important role in multidimensional data analysis against different degradations, such as sparse noise, and missing entries, and has a variety of applications in image processing and computer vision. In this paper, an optimization model for low-rank tensor completion problems is proposed and a block coordinate descent algorithm is developed to solve this model. It is shown that for one of the subproblems, the closed-form solution exists and for the other, a Riemannian conjugate gradient algorithm is used. In particular, when all elements are known, that is, no missing values, the block coordinate descent is simplified in the sense that both subproblems have closed-form solutions. The convergence analysis is established without requiring the latter subproblem to be solved exactly. Numerical experiments illustrate that the proposed model with the algorithm is feasible and effective.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.