Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner
{"title":"Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner","authors":"","doi":"10.1007/s00210-023-02903-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Breast cancer and osteosarcoma are common cancers in women and children, respectively, but ideal drugs for treating patients with breast cancer or osteosarcoma remain to be found. Micafungin is an antifungal drug with antitumor activity on leukemia. Based on the notion of drug repurposing, this study aims to evaluate the antitumor effects of micafungin on breast cancer and osteosarcoma in vitro and in vivo, and to elucidate the underlying mechanisms. Five breast cancer cell lines (MDA-MB-231, BT-549, SK-BR-3, MCF-7, and 4T1) and one osteosarcoma cell line (143B) were chosen for the in vitro studies. Micafungin exerted an inhibitory effect on the viability of all cell lines, and MCF-7 cells were most sensitive to micafungin among the breast cancer cell lines. In addition, micafungin showed an inhibitory effect on the proliferation, clone formation, and migration in MCF7 and 143B cells. The inhibitory effect of micafungin on the growth of breast cancer and osteosarcoma was further confirmed with xenograft tumor mouse models. To explore the underlying mechanisms, the effect of micafungin on epithelial-mesenchymal transition (EMT) was examined. As expected, the levels of matrix metalloproteinase 9 and vimentin in MCF-7 and 143B cells were notably reduced in the presence of micafungin, concomitant with the decreased levels of ubiquitin-specific protease 7 (USP7), p-AKT, and p-GSK-3β. Based on these observations, we conclude that micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in an USP7/AKT/GSK-3β pathway-dependent manner.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-schmiedebergs Archives of Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00210-023-02903-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer and osteosarcoma are common cancers in women and children, respectively, but ideal drugs for treating patients with breast cancer or osteosarcoma remain to be found. Micafungin is an antifungal drug with antitumor activity on leukemia. Based on the notion of drug repurposing, this study aims to evaluate the antitumor effects of micafungin on breast cancer and osteosarcoma in vitro and in vivo, and to elucidate the underlying mechanisms. Five breast cancer cell lines (MDA-MB-231, BT-549, SK-BR-3, MCF-7, and 4T1) and one osteosarcoma cell line (143B) were chosen for the in vitro studies. Micafungin exerted an inhibitory effect on the viability of all cell lines, and MCF-7 cells were most sensitive to micafungin among the breast cancer cell lines. In addition, micafungin showed an inhibitory effect on the proliferation, clone formation, and migration in MCF7 and 143B cells. The inhibitory effect of micafungin on the growth of breast cancer and osteosarcoma was further confirmed with xenograft tumor mouse models. To explore the underlying mechanisms, the effect of micafungin on epithelial-mesenchymal transition (EMT) was examined. As expected, the levels of matrix metalloproteinase 9 and vimentin in MCF-7 and 143B cells were notably reduced in the presence of micafungin, concomitant with the decreased levels of ubiquitin-specific protease 7 (USP7), p-AKT, and p-GSK-3β. Based on these observations, we conclude that micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in an USP7/AKT/GSK-3β pathway-dependent manner.