Ying Liu , Caleb Ho , Wayne Yu , Ying Huang , Jeffrey Miller , Qi Gao , Mustafa Syed , Yuanyuan Ma , Meiyi Wang , Lidia Maciag , Kseniya Petrova-Drus , Menglei Zhu , JinJuan Yao , Chad Vanderbilt , Benjamin Durham , Jamal Benhamida , Mark D. Ewalt , Ahmet Dogan , Mikhail Roshal , Khedoudja Nafa , Maria E. Arcila
{"title":"Quantification of Measurable Residual Disease Detection by Next-Generation Sequencing–Based Clonality Testing in B-Cell and Plasma Cell Neoplasms","authors":"Ying Liu , Caleb Ho , Wayne Yu , Ying Huang , Jeffrey Miller , Qi Gao , Mustafa Syed , Yuanyuan Ma , Meiyi Wang , Lidia Maciag , Kseniya Petrova-Drus , Menglei Zhu , JinJuan Yao , Chad Vanderbilt , Benjamin Durham , Jamal Benhamida , Mark D. Ewalt , Ahmet Dogan , Mikhail Roshal , Khedoudja Nafa , Maria E. Arcila","doi":"10.1016/j.jmoldx.2023.11.009","DOIUrl":null,"url":null,"abstract":"<div><p>Next-generation sequencing (NGS)–based measurable residual disease (MRD) monitoring in post-treatment settings can be crucial for relapse risk stratification in patients with B-cell and plasma cell neoplasms. Prior studies have focused on validation of various technical aspects of the MRD assays, but more studies are warranted to establish the performance characteristics and enable standardization and broad utilization in routine clinical practice. Here, the authors describe an NGS-based IGH MRD quantification assay, incorporating a spike-in calibrator for monitoring B-cell and plasma cell neoplasms based on their unique IGH rearrangement status. Comparison of MRD status (positive or undetectable) by NGS and flow cytometry (FC) assays showed high concordance (91%, 471/519 cases) and overall good linear correlation in MRD quantitation, particularly for chronic lymphocytic leukemia and B-lymphoblastic leukemia/lymphoma (<em>R</em> = 0.85). Quantitative correlation was lower for plasma cell neoplasms, where underestimation by FC is a known limitation. No significant effects on sequencing efficiency by the spike-in calibrator were observed, with excellent inter- and intra-assay reproducibility within the authors’ laboratory, and in comparison to an external laboratory, using the same assay and protocols. Assays performed both at internal and external laboratories showed highly concordant MRD detection (100%) and quantitation (<em>R</em> = 0.97). Overall, this NGS-based MRD assay showed highly reproducible results with quantitation that correlated well with FC MRD assessment, particularly for B-cell neoplasms.</p></div>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1525157823002945/pdfft?md5=d9ff2b87c9f3c551526a243ec8fafa64&pid=1-s2.0-S1525157823002945-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525157823002945","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Next-generation sequencing (NGS)–based measurable residual disease (MRD) monitoring in post-treatment settings can be crucial for relapse risk stratification in patients with B-cell and plasma cell neoplasms. Prior studies have focused on validation of various technical aspects of the MRD assays, but more studies are warranted to establish the performance characteristics and enable standardization and broad utilization in routine clinical practice. Here, the authors describe an NGS-based IGH MRD quantification assay, incorporating a spike-in calibrator for monitoring B-cell and plasma cell neoplasms based on their unique IGH rearrangement status. Comparison of MRD status (positive or undetectable) by NGS and flow cytometry (FC) assays showed high concordance (91%, 471/519 cases) and overall good linear correlation in MRD quantitation, particularly for chronic lymphocytic leukemia and B-lymphoblastic leukemia/lymphoma (R = 0.85). Quantitative correlation was lower for plasma cell neoplasms, where underestimation by FC is a known limitation. No significant effects on sequencing efficiency by the spike-in calibrator were observed, with excellent inter- and intra-assay reproducibility within the authors’ laboratory, and in comparison to an external laboratory, using the same assay and protocols. Assays performed both at internal and external laboratories showed highly concordant MRD detection (100%) and quantitation (R = 0.97). Overall, this NGS-based MRD assay showed highly reproducible results with quantitation that correlated well with FC MRD assessment, particularly for B-cell neoplasms.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.