Matching prior pairs connecting Maximum A Posteriori estimation and posterior expectation

Michiko Okudo, Keisuke Yano
{"title":"Matching prior pairs connecting Maximum A Posteriori estimation and posterior expectation","authors":"Michiko Okudo, Keisuke Yano","doi":"arxiv-2312.09586","DOIUrl":null,"url":null,"abstract":"Bayesian statistics has two common measures of central tendency of a\nposterior distribution: posterior means and Maximum A Posteriori (MAP)\nestimates. In this paper, we discuss a connection between MAP estimates and\nposterior means. We derive an asymptotic condition for a pair of prior\ndensities under which the posterior mean based on one prior coincides with the\nMAP estimate based on the other prior. A sufficient condition for the existence\nof this prior pair relates to $\\alpha$-flatness of the statistical model in\ninformation geometry. We also construct a matching prior pair using\n$\\alpha$-parallel priors. Our result elucidates an interesting connection\nbetween regularization in generalized linear regression models and posterior\nexpectation.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.09586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian statistics has two common measures of central tendency of a posterior distribution: posterior means and Maximum A Posteriori (MAP) estimates. In this paper, we discuss a connection between MAP estimates and posterior means. We derive an asymptotic condition for a pair of prior densities under which the posterior mean based on one prior coincides with the MAP estimate based on the other prior. A sufficient condition for the existence of this prior pair relates to $\alpha$-flatness of the statistical model in information geometry. We also construct a matching prior pair using $\alpha$-parallel priors. Our result elucidates an interesting connection between regularization in generalized linear regression models and posterior expectation.
连接最大后验估计和后验期望的匹配先验对
贝叶斯统计有两种常用的后验分布中心倾向度量方法:后验均值和最大后验估计值(MAP)。本文讨论了 MAP 估计和后验均值之间的联系。我们推导了一对先验的渐近条件,在此条件下,基于一个先验的后验均值与基于另一个先验的 MAP 估计值重合。这对先验存在的充分条件与信息几何学中统计模型的$\alpha$平坦性有关。我们还使用$α$-平行先验构建了匹配的先验对。我们的结果阐明了广义线性回归模型中的正则化与后验预期之间的有趣联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信