Philip Freese, Moritz Hauck, Tim Keil, Daniel Peterseim
{"title":"A super-localized generalized finite element method","authors":"Philip Freese, Moritz Hauck, Tim Keil, Daniel Peterseim","doi":"10.1007/s00211-023-01386-4","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel multi-scale method for elliptic partial differential equations with arbitrarily rough coefficients. In the spirit of numerical homogenization, the method constructs problem-adapted ansatz spaces with uniform algebraic approximation rates. Localized basis functions with the same super-exponential localization properties as the recently proposed Super-Localized Orthogonal Decomposition enable an efficient implementation. The method’s basis stability is enforced using a partition of unity approach. A natural extension to higher order is presented, resulting in higher approximation rates and enhanced localization properties. We perform a rigorous a priori and a posteriori error analysis and confirm our theoretical findings in a series of numerical experiments. In particular, we demonstrate the method’s applicability for challenging high-contrast channeled coefficients.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01386-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel multi-scale method for elliptic partial differential equations with arbitrarily rough coefficients. In the spirit of numerical homogenization, the method constructs problem-adapted ansatz spaces with uniform algebraic approximation rates. Localized basis functions with the same super-exponential localization properties as the recently proposed Super-Localized Orthogonal Decomposition enable an efficient implementation. The method’s basis stability is enforced using a partition of unity approach. A natural extension to higher order is presented, resulting in higher approximation rates and enhanced localization properties. We perform a rigorous a priori and a posteriori error analysis and confirm our theoretical findings in a series of numerical experiments. In particular, we demonstrate the method’s applicability for challenging high-contrast channeled coefficients.