Matroid Stratification of ML Degrees of Independence Models

Oliver Clarke, Serkan Hoşten, Nataliia Kushnerchuk, Janike Oldekop
{"title":"Matroid Stratification of ML Degrees of Independence Models","authors":"Oliver Clarke, Serkan Hoşten, Nataliia Kushnerchuk, Janike Oldekop","doi":"arxiv-2312.10010","DOIUrl":null,"url":null,"abstract":"We study the maximum likelihood (ML) degree of discrete exponential\nindependence models and models defined by the second hypersimplex. For models\nwith two independent variables, we show that the ML degree is an invariant of a\nmatroid associated to the model. We use this description to explore ML degrees\nvia hyperplane arrangements. For independence models with more variables, we\ninvestigate the connection between the vanishing of factors of its principal\n$A$-determinant and its ML degree. Similarly, for models defined by the second\nhypersimplex, we determine its principal $A$-determinant and give computational\nevidence towards a conjectured lower bound of its ML degree.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.10010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the maximum likelihood (ML) degree of discrete exponential independence models and models defined by the second hypersimplex. For models with two independent variables, we show that the ML degree is an invariant of a matroid associated to the model. We use this description to explore ML degrees via hyperplane arrangements. For independence models with more variables, we investigate the connection between the vanishing of factors of its principal $A$-determinant and its ML degree. Similarly, for models defined by the second hypersimplex, we determine its principal $A$-determinant and give computational evidence towards a conjectured lower bound of its ML degree.
ML 独立度模型的矩阵分层
我们研究了离散指数独立模型和第二超复数定义模型的最大似然度(ML)。对于有两个自变量的模型,我们证明最大似然度是与模型相关的矢量的不变量。我们利用这一描述,通过超平面排列来探索 ML 度。对于有更多变量的独立模型,我们研究了其主$A$决定因素的消失与其 ML 度之间的联系。同样,对于由第二超复数定义的模型,我们确定了它的主$A$-决定因素,并给出了其 ML 度的一个猜想下限的计算证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信