An analysis on the optimal control and approximate controllability for Hilfer fractional neutral integro-differential systems with finite delay

Yong-Ki Ma, K. Kavitha, Anurag Shukla, V. Vijayakumar, Kottakkaran Sooppy Nisar
{"title":"An analysis on the optimal control and approximate controllability for Hilfer fractional neutral integro-differential systems with finite delay","authors":"Yong-Ki Ma, K. Kavitha, Anurag Shukla, V. Vijayakumar, Kottakkaran Sooppy Nisar","doi":"10.1002/oca.3090","DOIUrl":null,"url":null,"abstract":"The existence and uniqueness of solutions to Hilfer fractional neutral delay integro-differential equations subject to nonlocal conditions are discussed in this study. The main results of this study are based in part on the fixed point techniques of Banach contraction and Krasnoselskii's fixed point theorem from calculus theory. First, we determine whether or not the fractional system has a mild solution. The uniqueness of the mild solution is further illustrated by expanding our results. The optimal control problems are governed by a new class of neutral delay integro-differential equations in Banach spaces, and we also develop sufficient conditions for the approximate controllability of a nonlinear fractional system. An example is given at the end to strengthen the compatibility of the results.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existence and uniqueness of solutions to Hilfer fractional neutral delay integro-differential equations subject to nonlocal conditions are discussed in this study. The main results of this study are based in part on the fixed point techniques of Banach contraction and Krasnoselskii's fixed point theorem from calculus theory. First, we determine whether or not the fractional system has a mild solution. The uniqueness of the mild solution is further illustrated by expanding our results. The optimal control problems are governed by a new class of neutral delay integro-differential equations in Banach spaces, and we also develop sufficient conditions for the approximate controllability of a nonlinear fractional system. An example is given at the end to strengthen the compatibility of the results.
具有有限延迟的希尔费分数中性整微分系统的最优控制和近似可控性分析
本研究讨论了非局部条件下 Hilfer 分式中性延迟积分微分方程解的存在性和唯一性。本研究的主要结果部分基于微积分理论中的巴拿赫收缩定点技术和 Krasnoselskii 定点定理。首先,我们确定分数系统是否有温和解。通过扩展我们的结果,进一步说明温和解的唯一性。最优控制问题受巴拿赫空间中一类新的中性延迟积分微分方程支配,我们还提出了非线性分数系统近似可控性的充分条件。最后还给出了一个例子,以加强结果的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信