A Multigrid Discretization of Discontinuous Galerkin Method for the Stokes Eigenvalue Problem

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ling Ling Sun,Hai Bi, Yidu Yang
{"title":"A Multigrid Discretization of Discontinuous Galerkin Method for the Stokes Eigenvalue Problem","authors":"Ling Ling Sun,Hai Bi, Yidu Yang","doi":"10.4208/cicp.oa-2023-0027","DOIUrl":null,"url":null,"abstract":"In this paper, based on the velocity-pressure formulation of the Stokes eigenvalue problem in $d$-dimensional case $(d=2,3),$ we propose a multigrid discretization of\ndiscontinuous Galerkin method using $\\mathbb{P}_k−\\mathbb{P}_k−1$ element $(k≥1)$ and prove its a priori\nerror estimate. We also give the a posteriori error estimators for approximate eigenpairs, prove their reliability and efficiency for eigenfunctions, and also analyze their\nreliability for eigenvalues. We implement adaptive calculation, and the numerical results confirm our theoretical predictions and show that our method is efficient and can\nachieve the optimal convergence order $\\mathcal{O}(do f^{ \\frac{−2k}{d}} ).$","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"105 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0027","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, based on the velocity-pressure formulation of the Stokes eigenvalue problem in $d$-dimensional case $(d=2,3),$ we propose a multigrid discretization of discontinuous Galerkin method using $\mathbb{P}_k−\mathbb{P}_k−1$ element $(k≥1)$ and prove its a priori error estimate. We also give the a posteriori error estimators for approximate eigenpairs, prove their reliability and efficiency for eigenfunctions, and also analyze their reliability for eigenvalues. We implement adaptive calculation, and the numerical results confirm our theoretical predictions and show that our method is efficient and can achieve the optimal convergence order $\mathcal{O}(do f^{ \frac{−2k}{d}} ).$
斯托克斯特征值问题的非连续伽勒金方法多网格离散化
本文基于$d$维情况下斯托克斯特征值问题的速度-压力公式$(d=2,3)$,提出了一种使用$\mathbb{P}_k-\mathbb{P}_k-1$元$(k≥1)$的多网格离散化的非连续伽勒金方法,并证明了其先验误差估计。我们还给出了近似特征对的后验误差估计,证明了它们对特征函数的可靠性和效率,并分析了它们对特征值的可靠性。我们实现了自适应计算,数值结果证实了我们的理论预测,并表明我们的方法是高效的,可以达到最佳收敛阶数 $\mathcal{O}(do f^{ \frac{-2k}{d}} )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信