Globally Well-Posedness Results of the Fractional Navier–Stokes Equations on the Heisenberg Group

IF 1.9 3区 数学 Q1 MATHEMATICS
Xiaolin Liu, Yong Zhou
{"title":"Globally Well-Posedness Results of the Fractional Navier–Stokes Equations on the Heisenberg Group","authors":"Xiaolin Liu, Yong Zhou","doi":"10.1007/s12346-023-00910-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the existence and uniqueness of mild solutions to the fractional Navier–Stokes equations related to time derivative of order <span>\\(\\alpha \\in (0,1)\\)</span>. And the mild solution is associated with the sublaplacian provided by the left invariant vector fields on the Heisenberg group. We demonstrate that when the nonlinear external force term matches the applicable conditions, the global mild solution can be obtained by using improved Ascoli–Arzela theorem and Schaefer’s fixed point theorem.\n</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"125 26 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00910-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the existence and uniqueness of mild solutions to the fractional Navier–Stokes equations related to time derivative of order \(\alpha \in (0,1)\). And the mild solution is associated with the sublaplacian provided by the left invariant vector fields on the Heisenberg group. We demonstrate that when the nonlinear external force term matches the applicable conditions, the global mild solution can be obtained by using improved Ascoli–Arzela theorem and Schaefer’s fixed point theorem.

海森堡群上分式纳维-斯托克斯方程的全局拟合结果
在本文中,我们研究了分数纳维-斯托克斯方程的温和解的存在性和唯一性,这些温和解与阶为 \(α \in (0,1)\) 的时间导数有关。温和解与海森堡群上的左不变矢量场提供的子拉普拉斯相关联。我们证明,当非线性外力项符合适用条件时,可以利用改进的阿斯科利-阿泽拉定理和谢弗定点定理得到全局温和解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信