Normal-beta exponential stochastic frontier model: Maximum simulated likelihood approach

IF 2.6 4区 经济学 Q1 ECONOMICS
Misgan Desale Nigusie
{"title":"Normal-beta exponential stochastic frontier model: Maximum simulated likelihood approach","authors":"Misgan Desale Nigusie","doi":"10.1007/s10258-023-00247-0","DOIUrl":null,"url":null,"abstract":"<p>This paper considers the beta exponential distribution as a distribution function of inefficacy score in a stochastic frontier model. The beta exponential distribution is a three-parameter distribution, and it is more flexible than commonly used probability density functions in a stochastic frontier model (SFM). This new model, a “Normal-Beta Exponential SFM”, nests another five SFMs. This paper presents a simulated log-likelihood function and simulated inefficiency estimator of a normal-beta exponential SFM, a closed form log-likelihood function and closed form inefficiency estimator of a normal-weighted exponential SFM, and an empirical study using a normal-beta exponential SFM. In our empirical study, we have used a likelihood ratio test to compare the performance of SFMs and a normal-beta exponential SFM fits the data better than other nested special case SFMs. Furthermore, the empirical result shows that parameters of a normal-beta exponential SFM can be estimated with less standard error or high certainty than a normal-gamma SFM.</p>","PeriodicalId":45031,"journal":{"name":"Portuguese Economic Journal","volume":"101 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portuguese Economic Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10258-023-00247-0","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the beta exponential distribution as a distribution function of inefficacy score in a stochastic frontier model. The beta exponential distribution is a three-parameter distribution, and it is more flexible than commonly used probability density functions in a stochastic frontier model (SFM). This new model, a “Normal-Beta Exponential SFM”, nests another five SFMs. This paper presents a simulated log-likelihood function and simulated inefficiency estimator of a normal-beta exponential SFM, a closed form log-likelihood function and closed form inefficiency estimator of a normal-weighted exponential SFM, and an empirical study using a normal-beta exponential SFM. In our empirical study, we have used a likelihood ratio test to compare the performance of SFMs and a normal-beta exponential SFM fits the data better than other nested special case SFMs. Furthermore, the empirical result shows that parameters of a normal-beta exponential SFM can be estimated with less standard error or high certainty than a normal-gamma SFM.

Abstract Image

正态-贝塔指数随机前沿模型:最大模拟似然法
本文考虑将贝塔指数分布作为随机前沿模型中无效得分的分布函数。贝塔指数分布是一种三参数分布,它比随机前沿模型(SFM)中常用的概率密度函数更灵活。这个新模型,即 "正态-贝塔指数 SFM",嵌套了另外五个 SFM。本文介绍了正态-贝塔指数 SFM 的模拟对数似然函数和模拟无效率估计值、正态加权指数 SFM 的闭合形式对数似然函数和闭合形式无效率估计值,以及使用正态-贝塔指数 SFM 进行的实证研究。在实证研究中,我们使用似然比检验来比较 SFM 的性能,发现正态-贝塔指数 SFM 比其他嵌套特例 SFM 更适合数据。此外,实证结果表明,与正态-伽马 SFM 相比,正态-贝塔指数 SFM 的参数可以以较小的标准误差或较高的确定性进行估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
7.70%
发文量
21
期刊介绍: The Portuguese Economic Journal publishes high-quality theoretical, empirical, applied or policy-oriented research papers on any field in economics. We enforce a rigorous, fair and prompt refereeing process. The geographical reference in the name of the journal only means that the journal is an initiative of Portuguese scholars. There is no bias in favour of particular topics and issues.Officially cited as: Port Econ J
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信