Efficient and Validated Numerical Evaluation of Abelian Integrals

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Florent Bréhard, Nicolas Brisebarre, Mioara Joldes, Warwick Tucker
{"title":"Efficient and Validated Numerical Evaluation of Abelian Integrals","authors":"Florent Bréhard, Nicolas Brisebarre, Mioara Joldes, Warwick Tucker","doi":"10.1145/3637550","DOIUrl":null,"url":null,"abstract":"<p>Abelian integrals play a key role in the infinitesimal version of Hilbert’s 16th problem. Being able to evaluate such integrals – with guaranteed error bounds – is a fundamental step in computer-aided proofs aimed at this problem. Using interpolation by trigonometric polynomials and quasi-Newton-Kantorovitch validation, we develop a validated numerics method for computing Abelian integrals in a quasi-linear number of arithmetic operations. Our approach is both effective, as exemplified on two practical perturbed integrable systems, and amenable to an implementation in a formal proof assistant, which is key to provide fully reliable computer-aided proofs.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"80 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3637550","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Abelian integrals play a key role in the infinitesimal version of Hilbert’s 16th problem. Being able to evaluate such integrals – with guaranteed error bounds – is a fundamental step in computer-aided proofs aimed at this problem. Using interpolation by trigonometric polynomials and quasi-Newton-Kantorovitch validation, we develop a validated numerics method for computing Abelian integrals in a quasi-linear number of arithmetic operations. Our approach is both effective, as exemplified on two practical perturbed integrable systems, and amenable to an implementation in a formal proof assistant, which is key to provide fully reliable computer-aided proofs.

高效且经过验证的阿贝尔积分数值评估
阿贝尔积分在希尔伯特第 16 个问题的无穷小版本中起着关键作用。能够在保证误差范围的情况下对这类积分进行评估,是针对该问题进行计算机辅助证明的基本步骤。利用三角多项式插值法和准牛顿-康托洛维奇验证,我们开发了一种经过验证的数值方法,可以在准线性算术运算中计算阿贝尔积分。我们的方法既有效(在两个实际的扰动可积分系统上得到了证明),又适合在形式化证明助手中实现,而形式化证明助手是提供完全可靠的计算机辅助证明的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信