Graphical methods and rings of invariants on the symmetric algebra

Rebecca Bourn, William Q. Erickson, Jeb F. Willenbring
{"title":"Graphical methods and rings of invariants on the symmetric algebra","authors":"Rebecca Bourn, William Q. Erickson, Jeb F. Willenbring","doi":"10.4153/s0008414x23000780","DOIUrl":null,"url":null,"abstract":"<p>Let <span>G</span> be a complex classical group, and let <span>V</span> be its defining representation (possibly plus a copy of the dual). A foundational problem in classical invariant theory is to write down generators and relations for the ring of <span>G</span>-invariant polynomial functions on the space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214132544397-0824:S0008414X23000780:S0008414X23000780_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal P^m(V)$</span></span></img></span></span> of degree-<span>m</span> homogeneous polynomial functions on <span>V</span>. In this paper, we replace <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214132544397-0824:S0008414X23000780:S0008414X23000780_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal P^m(V)$</span></span></img></span></span> with the full polynomial algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214132544397-0824:S0008414X23000780:S0008414X23000780_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal P(V)$</span></span></img></span></span>. As a result, the invariant ring is no longer finitely generated. Hence, instead of seeking generators, we aim to write down linear bases for bigraded components. Indeed, when <span>G</span> is of sufficiently high rank, we realize these bases as sets of graphs with prescribed number of vertices and edges. When the rank of <span>G</span> is small, there arise complicated linear dependencies among the graphs, but we remedy this setback via representation theory: in particular, we determine the dimension of an arbitrary component in terms of branching multiplicities from the general linear group to the symmetric group. We thereby obtain an expression for the bigraded Hilbert series of the ring of invariants on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214132544397-0824:S0008414X23000780:S0008414X23000780_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal P(V)$</span></span></img></span></span>. We conclude with examples using our graphical notation, several of which recover classical results.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a complex classical group, and let V be its defining representation (possibly plus a copy of the dual). A foundational problem in classical invariant theory is to write down generators and relations for the ring of G-invariant polynomial functions on the space Abstract Image$\mathcal P^m(V)$ of degree-m homogeneous polynomial functions on V. In this paper, we replace Abstract Image$\mathcal P^m(V)$ with the full polynomial algebra Abstract Image$\mathcal P(V)$. As a result, the invariant ring is no longer finitely generated. Hence, instead of seeking generators, we aim to write down linear bases for bigraded components. Indeed, when G is of sufficiently high rank, we realize these bases as sets of graphs with prescribed number of vertices and edges. When the rank of G is small, there arise complicated linear dependencies among the graphs, but we remedy this setback via representation theory: in particular, we determine the dimension of an arbitrary component in terms of branching multiplicities from the general linear group to the symmetric group. We thereby obtain an expression for the bigraded Hilbert series of the ring of invariants on Abstract Image$\mathcal P(V)$. We conclude with examples using our graphical notation, several of which recover classical results.

对称代数上的图形方法和不变式环
让 G 是一个复经典群,让 V 是它的定义表示(可能加上对偶的副本)。经典不变理论的一个基础问题是写出 V 上的度-m 同余多项式函数的空间 $\mathcal P^m(V)$ 上的 G 不变多项式函数环的生成器和关系。因此,不变环不再是有限生成的。因此,我们的目标不是寻找生成器,而是写下大等级成分的线性基。事实上,当 G 的秩足够高时,我们可以将这些基实现为具有规定顶点和边数的图集。当 G 的秩较小时,图形之间会出现复杂的线性依赖关系,但我们可以通过表示理论来弥补这一缺陷:特别是,我们可以根据从一般线性群到对称群的分支乘数来确定任意分量的维度。由此,我们得到了$\mathcal P(V)$上不变式环的大等级希尔伯特数列的表达式。最后,我们用我们的图形符号举例说明,其中有几个例子还原了经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信