Ghulam Abbas Gohar, Awais Akhtar, Hassan Raza, Ghulam Mustafa, Mahreen Fatima, Habib Ur Rehman, Muhammad Waqas Aslam, Abrar ul Haq, Waqar Manzoor
{"title":"Achieving enhanced tensile properties of polyurethane-multiwall carbon nanotubes nanocomposites","authors":"Ghulam Abbas Gohar, Awais Akhtar, Hassan Raza, Ghulam Mustafa, Mahreen Fatima, Habib Ur Rehman, Muhammad Waqas Aslam, Abrar ul Haq, Waqar Manzoor","doi":"10.1088/2632-959x/ad100b","DOIUrl":null,"url":null,"abstract":"Polymeric nanocomposites have emerged as a promising class of materials with improved strength, stiffness, and toughness compared to pure polymers. The incorporation of nanoparticles into polymer matrices, such as carbon nanotubes, graphene, clay nanoparticles, and metal oxides, has shown considerable potential for enhancing the properties of the produced nanocomposites. Herein, the influence of filtered multiwalled carbon nanotubes (MWCNTs) on solution-cast polyurethane (PU) nanocomposite is explored. Scanning electron microscopy (<italic toggle=\"yes\">SEM</italic>), x-ray diffraction (<italic toggle=\"yes\">XRD</italic>), Raman spectroscopy, thermogravimetric analysis (<italic toggle=\"yes\">TGA</italic>), and x-rays photoelectron spectroscopy (<italic toggle=\"yes\">XPS</italic>), respectively, were employed to characterize the morphology, crystal structure, phase, thermal stability, and oxidation states of the samples. MWCNTs with a higher weight% of MWCNTs showcased superior mechanical properties compared to base polymer (PU). The nanocomposite with 1 wt% of MWCNTs and 99 wt% of PU exhibited the highest stress (19.25 N mm<sup>−2</sup>) and strain (700.22%) among all fabricated samples. Also, Modulus of elasticity (∼25%), Ultimate tensile strength (∼21%), and elongation at break (∼11%) are increased by incorporating 0.5 wt% MWCNTs into PU matrix. The attainment of these remarkable mechanical properties could be attributed to excellent dispersion, interfacial bonding and structural stability of filtered MWCNTs in the nanocomposites.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad100b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polymeric nanocomposites have emerged as a promising class of materials with improved strength, stiffness, and toughness compared to pure polymers. The incorporation of nanoparticles into polymer matrices, such as carbon nanotubes, graphene, clay nanoparticles, and metal oxides, has shown considerable potential for enhancing the properties of the produced nanocomposites. Herein, the influence of filtered multiwalled carbon nanotubes (MWCNTs) on solution-cast polyurethane (PU) nanocomposite is explored. Scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), and x-rays photoelectron spectroscopy (XPS), respectively, were employed to characterize the morphology, crystal structure, phase, thermal stability, and oxidation states of the samples. MWCNTs with a higher weight% of MWCNTs showcased superior mechanical properties compared to base polymer (PU). The nanocomposite with 1 wt% of MWCNTs and 99 wt% of PU exhibited the highest stress (19.25 N mm−2) and strain (700.22%) among all fabricated samples. Also, Modulus of elasticity (∼25%), Ultimate tensile strength (∼21%), and elongation at break (∼11%) are increased by incorporating 0.5 wt% MWCNTs into PU matrix. The attainment of these remarkable mechanical properties could be attributed to excellent dispersion, interfacial bonding and structural stability of filtered MWCNTs in the nanocomposites.