The branch-cut quantum gravity with a self-coupling inflation scalar field: The wave function of the Universe

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Fridolin Weber, Peter O. Hess, Benno Bodmann, José de Freitas Pacheco, Dimiter Hadjimichef, Marcelo Netz-Marzola, Geovane Naysinger, Moisés Razeira, César A. Zen Vasconcellos
{"title":"The branch-cut quantum gravity with a self-coupling inflation scalar field: The wave function of the Universe","authors":"Fridolin Weber,&nbsp;Peter O. Hess,&nbsp;Benno Bodmann,&nbsp;José de Freitas Pacheco,&nbsp;Dimiter Hadjimichef,&nbsp;Marcelo Netz-Marzola,&nbsp;Geovane Naysinger,&nbsp;Moisés Razeira,&nbsp;César A. Zen Vasconcellos","doi":"10.1002/asna.20230148","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the implications of a commutative formulation that integrates branch-cutting cosmology, the Wheeler–DeWitt equation, and Hořava–Lifshitz quantum gravity. Building on a mini-superspace structure, we explore the impact of an inflaton-type scalar field on the wave function of the Universe. Specifically analyzing the dynamical solutions of branch-cut gravity within a mini-superspace framework, we emphasize the scalar field's influence on the evolution of the evolution of the wave function of the Universe. Our research unveils a helix-like function that characterizes a topologically foliated spacetime structure. The starting point is the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, with running coupling constants denoted as <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>g</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {g}_i $$</annotation>\n </semantics></math>. The corresponding wave equations are derived and are resolved. The commutative quantum gravity approach preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. Additionally, we delve into a mini-superspace of variables, incorporating scalar-inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions for the wave equations without recurring to numerical approximations.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.20230148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230148","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the implications of a commutative formulation that integrates branch-cutting cosmology, the Wheeler–DeWitt equation, and Hořava–Lifshitz quantum gravity. Building on a mini-superspace structure, we explore the impact of an inflaton-type scalar field on the wave function of the Universe. Specifically analyzing the dynamical solutions of branch-cut gravity within a mini-superspace framework, we emphasize the scalar field's influence on the evolution of the evolution of the wave function of the Universe. Our research unveils a helix-like function that characterizes a topologically foliated spacetime structure. The starting point is the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, with running coupling constants denoted as g i $$ {g}_i $$ . The corresponding wave equations are derived and are resolved. The commutative quantum gravity approach preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. Additionally, we delve into a mini-superspace of variables, incorporating scalar-inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions for the wave equations without recurring to numerical approximations.

Abstract Image

带有自耦合膨胀标量场的分支切割量子引力:宇宙的波函数
本文重点探讨了将分支切割宇宙学、惠勒-德威特方程和霍扎瓦-利夫希兹量子引力整合在一起的换元公式的意义。在迷你超空间结构的基础上,我们探索了膨胀子型标量场对宇宙波函数的影响。我们在微型超空间框架内具体分析了分支切割引力的动力学解,强调了标量场对宇宙波函数演化的影响。我们的研究揭示了一种螺旋状函数,它是拓扑叶状时空结构的特征。研究的出发点是霍扎瓦-利夫希茨作用,它取决于支化宇宙的标量曲率及其导数,运行耦合常数表示为 gi$$ {g}_i $$$。推导并解析了相应的波方程。换元量子引力方法保留了广义相对论的衍射性质,与阿诺维特-戴塞尔-米斯纳形式主义保持兼容。此外,我们还深入研究了一个微型超变量空间,纳入了标量-惰性场,并探索了通货膨胀模型,特别是混沌和非混沌情景。我们获得了波方程的解,而无需重复数值近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信