Quantum squeezing induced nonreciprocal enhancement of optomechanical cooling

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Tian-Xiang Lu, Liu-Sha Chen, Wo-Jun Zhong, Xing Xiao
{"title":"Quantum squeezing induced nonreciprocal enhancement of optomechanical cooling","authors":"Tian-Xiang Lu, Liu-Sha Chen, Wo-Jun Zhong, Xing Xiao","doi":"10.3389/fphy.2023.1332496","DOIUrl":null,"url":null,"abstract":"We theoretically propose how to achieve nonreciprocal enhancement of mechanical cooling in a compound cavity optomechanical system composed of an optomechanical resonator and a <jats:italic>χ</jats:italic><jats:sup>(2)</jats:sup>-nonlinear resonator. By parametric pumping the <jats:italic>χ</jats:italic><jats:sup>(2)</jats:sup>-nonlinear resonator unidirectionally with a classical coherent field, quantum squeezing of the resonator mode emerges in one direction but not in the other, resulting in asymmetric optical detuning and a tunable chiral photon interaction between two resonators. As a result, nonreciprocal mechanical cooling is achieved. More importantly, enhanced mechanical cooling deep into the ground-state can be achieved in the selected directions due to the squeezing effect. These results provide an experimentally feasible way to realize nonreciprocal ground-state cooling of mechanical resonator, which may have a wide range of applications in quantum communication and quantum technologies.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"97 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2023.1332496","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We theoretically propose how to achieve nonreciprocal enhancement of mechanical cooling in a compound cavity optomechanical system composed of an optomechanical resonator and a χ(2)-nonlinear resonator. By parametric pumping the χ(2)-nonlinear resonator unidirectionally with a classical coherent field, quantum squeezing of the resonator mode emerges in one direction but not in the other, resulting in asymmetric optical detuning and a tunable chiral photon interaction between two resonators. As a result, nonreciprocal mechanical cooling is achieved. More importantly, enhanced mechanical cooling deep into the ground-state can be achieved in the selected directions due to the squeezing effect. These results provide an experimentally feasible way to realize nonreciprocal ground-state cooling of mechanical resonator, which may have a wide range of applications in quantum communication and quantum technologies.
量子挤压诱导的光机械冷却非互惠增强
我们从理论上提出了如何在由光机械谐振器和χ(2)-非线性谐振器组成的复合腔光机械系统中实现机械冷却的非对等增强。通过用经典相干场对 χ(2)-非线性谐振器进行单向参数泵浦,谐振器模式的量子挤压在一个方向上出现,而在另一个方向上没有出现,从而导致两个谐振器之间出现非对称光学失谐和可调手性光子相互作用。因此,实现了非互惠的机械冷却。更重要的是,由于挤压效应,在选定的方向上可以实现深入基态的增强机械冷却。这些结果为实现机械谐振器的非互惠基态冷却提供了实验上可行的方法,可能会在量子通信和量子技术领域有广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信