{"title":"Wood-derived freestanding integrated electrode with robust interface-coupling effect boosted bifunctionality for rechargeable zinc-air batteries","authors":"Benji Zhou, Nengneng Xu, Liangcai Wu, Dongqing Cai, Eileen H. Yu, Jinli Qiao","doi":"10.1016/j.gee.2023.12.002","DOIUrl":null,"url":null,"abstract":"<p>Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction (ORR/OER). The efficient cathode catalyst is urgently needed to further improve the performance of rechargeable zinc-air batteries. Herein, an activation-doping assisted interface modification strategy is demonstrated based on freestanding integrated carbon composite (CoNiLDH@NPC) composed of wood-based N and P doped active carbon (NPC) and CoNi layer double hydroxides (CoNiLDH). In the light of its large specific surface area and unique defective structure, CoNiLDH@NPC with strong interface-coupling effect in 2D-3D micro-nanostructure exhibits outstanding bifunctionality. Such carbon composites show half-wave potential of 0.85 V for ORR, overpotential of 320 mV with current density of 10 mA cm<sup>-2</sup> for OER, and ultra-low gap of 0.70 V. Furthermore, highly-ordered open channels of wood provide enormous space to form abundant triple-phase boundary for accelerating the catalytic process. Consequently, Zinc-air batteries using CoNiLDH@NPC show high power density (aqueous: 263 mW cm<sup>-2</sup>, quasi-solid-state: 65.8 mW cm<sup>-2</sup>) and long-term stability (aqueous: 500 h, quasi-solid-state: 120 h). This integrated protocol opens a new avenue for the rational design of efficient freestanding air electrode from biomass resources.</p>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"156 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2023.12.002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction (ORR/OER). The efficient cathode catalyst is urgently needed to further improve the performance of rechargeable zinc-air batteries. Herein, an activation-doping assisted interface modification strategy is demonstrated based on freestanding integrated carbon composite (CoNiLDH@NPC) composed of wood-based N and P doped active carbon (NPC) and CoNi layer double hydroxides (CoNiLDH). In the light of its large specific surface area and unique defective structure, CoNiLDH@NPC with strong interface-coupling effect in 2D-3D micro-nanostructure exhibits outstanding bifunctionality. Such carbon composites show half-wave potential of 0.85 V for ORR, overpotential of 320 mV with current density of 10 mA cm-2 for OER, and ultra-low gap of 0.70 V. Furthermore, highly-ordered open channels of wood provide enormous space to form abundant triple-phase boundary for accelerating the catalytic process. Consequently, Zinc-air batteries using CoNiLDH@NPC show high power density (aqueous: 263 mW cm-2, quasi-solid-state: 65.8 mW cm-2) and long-term stability (aqueous: 500 h, quasi-solid-state: 120 h). This integrated protocol opens a new avenue for the rational design of efficient freestanding air electrode from biomass resources.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.