{"title":"Restricted Birkhoff Polytopes and Ehrhart Period Collapse","authors":"Per Alexandersson, Sam Hopkins, Gjergji Zaimi","doi":"10.1007/s00454-023-00611-z","DOIUrl":null,"url":null,"abstract":"<p>We show that the polytopes obtained from the Birkhoff polytope by imposing additional inequalities restricting the “longest increasing subsequence” have Ehrhart quasi-polynomials which are honest polynomials, even though they are just rational polytopes in general. We do this by defining a continuous, piecewise-linear bijection to a certain Gelfand–Tsetlin polytope. This bijection is not an integral equivalence but it respects lattice points in the appropriate way to imply that the two polytopes have the same Ehrhart (quasi-)polynomials. In fact, the bijection is essentially the Robinson–Schensted–Knuth correspondence.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00611-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the polytopes obtained from the Birkhoff polytope by imposing additional inequalities restricting the “longest increasing subsequence” have Ehrhart quasi-polynomials which are honest polynomials, even though they are just rational polytopes in general. We do this by defining a continuous, piecewise-linear bijection to a certain Gelfand–Tsetlin polytope. This bijection is not an integral equivalence but it respects lattice points in the appropriate way to imply that the two polytopes have the same Ehrhart (quasi-)polynomials. In fact, the bijection is essentially the Robinson–Schensted–Knuth correspondence.