The Moduli of Continuity for Operator Fractional Brownian Motion

Pub Date : 2023-12-15 DOI:10.1007/s10959-023-01307-z
Wensheng Wang
{"title":"The Moduli of Continuity for Operator Fractional Brownian Motion","authors":"Wensheng Wang","doi":"10.1007/s10959-023-01307-z","DOIUrl":null,"url":null,"abstract":"<p>The almost-sure sample path behavior of the operator fractional Brownian motion with exponent <i>D</i>, including multivariate fractional Brownian motion, is investigated. In particular, the global and the local moduli of continuity of the sample paths are established. These results show that the global and the local moduli of continuity of the sample paths are completely determined by the real parts of the eigenvalues of the exponent <i>D</i>, as well as the covariance matrix at some unit vector. These results are applicable to multivariate fractional Brownian motion.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-023-01307-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The almost-sure sample path behavior of the operator fractional Brownian motion with exponent D, including multivariate fractional Brownian motion, is investigated. In particular, the global and the local moduli of continuity of the sample paths are established. These results show that the global and the local moduli of continuity of the sample paths are completely determined by the real parts of the eigenvalues of the exponent D, as well as the covariance matrix at some unit vector. These results are applicable to multivariate fractional Brownian motion.

分享
查看原文
算子分数布朗运动的连续性模量
研究了指数为 D 的算子分数布朗运动(包括多元分数布朗运动)的几乎确定的样本路径行为。特别是建立了样本路径的全局和局部连续性模量。这些结果表明,样本路径的全局和局部连续性模量完全由指数 D 的特征值实部以及某个单位向量的协方差矩阵决定。这些结果适用于多元分数布朗运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信