Semantics-Division Duplexing: A Novel Full-Duplex Paradigm

Kai Niu, Zijian Liang, Chao Dong, Jincheng Dai, Zhongwei Si, Ping Zhang
{"title":"Semantics-Division Duplexing: A Novel Full-Duplex Paradigm","authors":"Kai Niu, Zijian Liang, Chao Dong, Jincheng Dai, Zhongwei Si, Ping Zhang","doi":"arxiv-2312.08862","DOIUrl":null,"url":null,"abstract":"In-band full-duplex (IBFD) is a theoretically effective solution to increase\nthe overall throughput for the future wireless communications system by\nenabling transmission and reception over the same time-frequency resources.\nHowever, reliable source reconstruction remains a great challenge in the\npractical IBFD systems due to the non-ideal elimination of the\nself-interference and the inherent limitations of the separate source and\nchannel coding methods. On the other hand, artificial intelligence-enabled\nsemantic communication can provide a viable direction for the optimization of\nthe IBFD system. This article introduces a novel IBFD paradigm with the\nguidance of semantic communication called semantics-division duplexing (SDD).\nIt utilizes semantic domain processing to further suppress self-interference,\ndistinguish the expected semantic information, and recover the desired sources.\nFurther integration of the digital and semantic domain processing can be\nimplemented so as to achieve intelligent and concise communications. We present\nthe advantages of the SDD paradigm with theoretical explanations and provide\nsome visualized results to verify its effectiveness.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.08862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In-band full-duplex (IBFD) is a theoretically effective solution to increase the overall throughput for the future wireless communications system by enabling transmission and reception over the same time-frequency resources. However, reliable source reconstruction remains a great challenge in the practical IBFD systems due to the non-ideal elimination of the self-interference and the inherent limitations of the separate source and channel coding methods. On the other hand, artificial intelligence-enabled semantic communication can provide a viable direction for the optimization of the IBFD system. This article introduces a novel IBFD paradigm with the guidance of semantic communication called semantics-division duplexing (SDD). It utilizes semantic domain processing to further suppress self-interference, distinguish the expected semantic information, and recover the desired sources. Further integration of the digital and semantic domain processing can be implemented so as to achieve intelligent and concise communications. We present the advantages of the SDD paradigm with theoretical explanations and provide some visualized results to verify its effectiveness.
语义分割双工:新颖的全双工范例
理论上,带内全双工(IBFD)是提高未来无线通信系统总体吞吐量的有效解决方案,它可以在相同的时频资源上进行传输和接收。然而,由于无法理想地消除自干扰以及独立信源和信道编码方法的固有局限性,可靠的信源重构在实际的 IBFD 系统中仍然是一个巨大的挑战。另一方面,人工智能支持的语义通信可以为 IBFD 系统的优化提供一个可行的方向。本文介绍了一种以语义通信为指导的新型 IBFD 范式--语义分割双工(SDD),它利用语义域处理进一步抑制自干扰、区分预期的语义信息并恢复所需的信源。我们通过理论解释介绍了 SDD 范式的优势,并提供了一些可视化结果来验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信