On a class of Lebesgue-Ramanujan-Nagell equations

IF 0.6 3区 数学 Q3 MATHEMATICS
Azizul Hoque
{"title":"On a class of Lebesgue-Ramanujan-Nagell equations","authors":"Azizul Hoque","doi":"10.1007/s10998-023-00564-z","DOIUrl":null,"url":null,"abstract":"<p>We deeply investigate the Diophantine equation <span>\\(cx^2+d^{2m+1}=2y^n\\)</span> in integers <span>\\(x, y\\ge 1, m\\ge 0\\)</span> and <span>\\(n\\ge 3\\)</span>, where <i>c</i> and <i>d</i> are coprime positive integers satisfying <span>\\(cd\\not \\equiv 3 \\pmod 4\\)</span>. We first solve this equation for prime <i>n</i> under the condition <span>\\(\\gcd (n, h(-cd))=1\\)</span>, where <span>\\(h(-cd)\\)</span> denotes the class number of the imaginary quadratic field <span>\\({\\mathbb {Q}}(\\sqrt{-cd})\\)</span>. We then completely solve this equation for both <i>c</i> and <i>d</i> primes under the assumption <span>\\(\\gcd (n, h(-cd))=1\\)</span>. We also completely solve this equation for <span>\\(c=1\\)</span> and <span>\\(d\\equiv 1 \\pmod 4\\)</span> under the condition <span>\\(\\gcd (n, h(-d))=1\\)</span>. For some fixed values of <i>c</i> and <i>d</i>, we derive some results concerning the solvability of this equation.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"55 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00564-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We deeply investigate the Diophantine equation \(cx^2+d^{2m+1}=2y^n\) in integers \(x, y\ge 1, m\ge 0\) and \(n\ge 3\), where c and d are coprime positive integers satisfying \(cd\not \equiv 3 \pmod 4\). We first solve this equation for prime n under the condition \(\gcd (n, h(-cd))=1\), where \(h(-cd)\) denotes the class number of the imaginary quadratic field \({\mathbb {Q}}(\sqrt{-cd})\). We then completely solve this equation for both c and d primes under the assumption \(\gcd (n, h(-cd))=1\). We also completely solve this equation for \(c=1\) and \(d\equiv 1 \pmod 4\) under the condition \(\gcd (n, h(-d))=1\). For some fixed values of c and d, we derive some results concerning the solvability of this equation.

关于一类 Lebesgue-Ramanujan-Nagell 方程
我们深入研究了整数 \(x, y\ge 1, m\ge 0\) 和 \(n\ge 3\) 中的二叉方程 \(cx^2+d^{2m+1}=2y^n\) ,其中 c 和 d 是满足 \(cd\not \equiv 3 \pmod 4\) 的共正整数。我们首先在质数 n 的条件下求解这个方程(\(gcd (n, h(-cd))=1),其中\(h(-cd)\)表示虚二次域\({\mathbb {Q}}(\sqrt{-cd})\) 的类数。然后,我们在假设 \(\gcd (n, h(-cd))=1\) 的条件下对 c 和 d 素数完全求解这个方程。在(\gcd (n, h(-d))=1)的条件下,我们还可以完全求解这个方程的(c=1)和(d\equiv 1 \pmod 4\ )。对于 c 和 d 的一些固定值,我们得出了一些关于这个方程可解性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信