On a class of Lebesgue-Ramanujan-Nagell equations

Pub Date : 2023-12-14 DOI:10.1007/s10998-023-00564-z
Azizul Hoque
{"title":"On a class of Lebesgue-Ramanujan-Nagell equations","authors":"Azizul Hoque","doi":"10.1007/s10998-023-00564-z","DOIUrl":null,"url":null,"abstract":"<p>We deeply investigate the Diophantine equation <span>\\(cx^2+d^{2m+1}=2y^n\\)</span> in integers <span>\\(x, y\\ge 1, m\\ge 0\\)</span> and <span>\\(n\\ge 3\\)</span>, where <i>c</i> and <i>d</i> are coprime positive integers satisfying <span>\\(cd\\not \\equiv 3 \\pmod 4\\)</span>. We first solve this equation for prime <i>n</i> under the condition <span>\\(\\gcd (n, h(-cd))=1\\)</span>, where <span>\\(h(-cd)\\)</span> denotes the class number of the imaginary quadratic field <span>\\({\\mathbb {Q}}(\\sqrt{-cd})\\)</span>. We then completely solve this equation for both <i>c</i> and <i>d</i> primes under the assumption <span>\\(\\gcd (n, h(-cd))=1\\)</span>. We also completely solve this equation for <span>\\(c=1\\)</span> and <span>\\(d\\equiv 1 \\pmod 4\\)</span> under the condition <span>\\(\\gcd (n, h(-d))=1\\)</span>. For some fixed values of <i>c</i> and <i>d</i>, we derive some results concerning the solvability of this equation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00564-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We deeply investigate the Diophantine equation \(cx^2+d^{2m+1}=2y^n\) in integers \(x, y\ge 1, m\ge 0\) and \(n\ge 3\), where c and d are coprime positive integers satisfying \(cd\not \equiv 3 \pmod 4\). We first solve this equation for prime n under the condition \(\gcd (n, h(-cd))=1\), where \(h(-cd)\) denotes the class number of the imaginary quadratic field \({\mathbb {Q}}(\sqrt{-cd})\). We then completely solve this equation for both c and d primes under the assumption \(\gcd (n, h(-cd))=1\). We also completely solve this equation for \(c=1\) and \(d\equiv 1 \pmod 4\) under the condition \(\gcd (n, h(-d))=1\). For some fixed values of c and d, we derive some results concerning the solvability of this equation.

分享
查看原文
关于一类 Lebesgue-Ramanujan-Nagell 方程
我们深入研究了整数 \(x, y\ge 1, m\ge 0\) 和 \(n\ge 3\) 中的二叉方程 \(cx^2+d^{2m+1}=2y^n\) ,其中 c 和 d 是满足 \(cd\not \equiv 3 \pmod 4\) 的共正整数。我们首先在质数 n 的条件下求解这个方程(\(gcd (n, h(-cd))=1),其中\(h(-cd)\)表示虚二次域\({\mathbb {Q}}(\sqrt{-cd})\) 的类数。然后,我们在假设 \(\gcd (n, h(-cd))=1\) 的条件下对 c 和 d 素数完全求解这个方程。在(\gcd (n, h(-d))=1)的条件下,我们还可以完全求解这个方程的(c=1)和(d\equiv 1 \pmod 4\ )。对于 c 和 d 的一些固定值,我们得出了一些关于这个方程可解性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信