A case for ongoing structural support to maximise infectious disease modelling efficiency for future public health emergencies: A modelling perspective
Epke A. Le Rutte , Andrew J. Shattock , Cheng Zhao , Soushieta Jagadesh , Miloš Balać , Sebastian A. Müller , Kai Nagel , Alexander L. Erath , Kay W. Axhausen , Thomas P. Van Boeckel , Melissa A. Penny
{"title":"A case for ongoing structural support to maximise infectious disease modelling efficiency for future public health emergencies: A modelling perspective","authors":"Epke A. Le Rutte , Andrew J. Shattock , Cheng Zhao , Soushieta Jagadesh , Miloš Balać , Sebastian A. Müller , Kai Nagel , Alexander L. Erath , Kay W. Axhausen , Thomas P. Van Boeckel , Melissa A. Penny","doi":"10.1016/j.epidem.2023.100734","DOIUrl":null,"url":null,"abstract":"<div><p>This short communication reflects upon the challenges and recommendations of multiple COVID-19 modelling and data analytic groups that provided quantitative evidence to support health policy discussions in Switzerland and Germany during the SARS-CoV-2 pandemic.</p><p>Capacity strengthening outside infectious disease emergencies will be required to enable an environment for a timely, efficient, and data-driven response to support decisions during any future infectious disease emergency.</p><p>This will require 1) a critical mass of trained experts who continuously advance state-of-the-art methodological tools, 2) the establishment of structural liaisons amongst scientists and decision-makers, and 3) the foundation and management of data-sharing frameworks.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"46 ","pages":"Article 100734"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000701/pdfft?md5=41aee9a81b2e351e51317db259a7d544&pid=1-s2.0-S1755436523000701-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436523000701","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
This short communication reflects upon the challenges and recommendations of multiple COVID-19 modelling and data analytic groups that provided quantitative evidence to support health policy discussions in Switzerland and Germany during the SARS-CoV-2 pandemic.
Capacity strengthening outside infectious disease emergencies will be required to enable an environment for a timely, efficient, and data-driven response to support decisions during any future infectious disease emergency.
This will require 1) a critical mass of trained experts who continuously advance state-of-the-art methodological tools, 2) the establishment of structural liaisons amongst scientists and decision-makers, and 3) the foundation and management of data-sharing frameworks.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.