On the reflexivity properties of Banach bundles and Banach modules

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Milica Lučić, Enrico Pasqualetto, Ivana Vojnović
{"title":"On the reflexivity properties of Banach bundles and Banach modules","authors":"Milica Lučić, Enrico Pasqualetto, Ivana Vojnović","doi":"10.1007/s43037-023-00315-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate some reflexivity-type properties of separable measurable Banach bundles over a <span>\\(\\sigma \\)</span>-finite measure space. Our two main results are the following:</p><ul>\n<li>\n<p>The fibers of a bundle are uniformly convex (with a common modulus of convexity) if and only if the space of its <span>\\(L^p\\)</span>-sections is uniformly convex for every <span>\\(p\\in (1,\\infty )\\)</span>.</p>\n</li>\n<li>\n<p>The fibers of a bundle are reflexive if and only if the space of its <span>\\(L^p\\)</span>-sections is reflexive for every <span>\\(p\\in (1,\\infty )\\)</span>.</p>\n</li>\n</ul><p> They generalise well-known results for Lebesgue–Bochner spaces.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-023-00315-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate some reflexivity-type properties of separable measurable Banach bundles over a \(\sigma \)-finite measure space. Our two main results are the following:

  • The fibers of a bundle are uniformly convex (with a common modulus of convexity) if and only if the space of its \(L^p\)-sections is uniformly convex for every \(p\in (1,\infty )\).

  • The fibers of a bundle are reflexive if and only if the space of its \(L^p\)-sections is reflexive for every \(p\in (1,\infty )\).

They generalise well-known results for Lebesgue–Bochner spaces.

论巴拿赫束和巴拿赫模块的反射特性
在本文中,我们研究了在(\sigma \)无限度量空间上的可分离可度量巴拿赫束的一些反射型性质。我们的两个主要结果如下:当且仅当它的 \(L^p\)-section 空间对于每一个 \(p\in (1,\infty )\) 都是均匀凸的时候,束的纤维才是均匀凸的(具有共同的凸模)。当且仅当对于每一个(p\in (1,\infty))来说,它的\(L^p\)-截面的空间是反折的时候,束的纤维才是反折的。它们概括了 Lebesgue-Bochner 空间的著名结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信