{"title":"Optimal investment in defined contribution pension schemes with forward utility preferences","authors":"Kenneth Tsz Hin Ng , Wing Fung Chong","doi":"10.1016/j.insmatheco.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Optimal investment strategies of an individual worker during the accumulation phase in the defined contribution pension scheme have been well studied in the literature. Most of them adopted the classical backward model and approach, but any pre-specifications of retirement time, preferences, and market environment models do not often hold in such a prolonged horizon of the pension scheme. Pre-commitment to ensure the time-consistency of an optimal investment strategy derived from the backward model and approach leads the supposedly optimal strategy<span> to be sub-optimal in the actual realizations. This paper revisits the optimal investment problem for the worker during the accumulation phase in the defined contribution pension scheme, via the forward preferences, in which an environment-adapting strategy is able to hold optimality<span> and time-consistency together. Stochastic partial differential equation representation for the worker's forward preferences is illustrated. This paper constructs two of the forward utility preferences and solves the corresponding optimal investment strategies, in the cases of initial power and exponential utility functions.</span></span></p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"114 ","pages":"Pages 192-211"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668723001038","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optimal investment strategies of an individual worker during the accumulation phase in the defined contribution pension scheme have been well studied in the literature. Most of them adopted the classical backward model and approach, but any pre-specifications of retirement time, preferences, and market environment models do not often hold in such a prolonged horizon of the pension scheme. Pre-commitment to ensure the time-consistency of an optimal investment strategy derived from the backward model and approach leads the supposedly optimal strategy to be sub-optimal in the actual realizations. This paper revisits the optimal investment problem for the worker during the accumulation phase in the defined contribution pension scheme, via the forward preferences, in which an environment-adapting strategy is able to hold optimality and time-consistency together. Stochastic partial differential equation representation for the worker's forward preferences is illustrated. This paper constructs two of the forward utility preferences and solves the corresponding optimal investment strategies, in the cases of initial power and exponential utility functions.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.