Victor Nuñez, Sergio Bravo, J D Correa, Leonor Chico, M Pacheco
{"title":"Higher-order obstructed atomic insulator phase inpentagonal monolayer PdSe2","authors":"Victor Nuñez, Sergio Bravo, J D Correa, Leonor Chico, M Pacheco","doi":"10.1088/2053-1583/ad0f2a","DOIUrl":null,"url":null,"abstract":"We investigate a pentagonal monolayer of palladium diselenide, a stable two-dimensional system, as a material realization of a crystalline phase with nontrivial topological electronic properties. We find that its electronic structure involves an atomic obstructed insulator related to higher-order topology, which is a consequence of the selenium-selenium bond dimerization along with inversion and time-reversal symmetry). By means of first-principles calculations and the analysis of symmetry indicators and topological invariants, we also characterize the electronic corner states associated with the atomic obstruction and compute the corresponding corner charge for a finite geometry, which is found to be not quantized but still inversion-protected. Applying tensile strain to the finite geometry we verify the robustness of the corner states and also achieve a strain-controlled variation of the corner charge magnitude.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"9 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad0f2a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a pentagonal monolayer of palladium diselenide, a stable two-dimensional system, as a material realization of a crystalline phase with nontrivial topological electronic properties. We find that its electronic structure involves an atomic obstructed insulator related to higher-order topology, which is a consequence of the selenium-selenium bond dimerization along with inversion and time-reversal symmetry). By means of first-principles calculations and the analysis of symmetry indicators and topological invariants, we also characterize the electronic corner states associated with the atomic obstruction and compute the corresponding corner charge for a finite geometry, which is found to be not quantized but still inversion-protected. Applying tensile strain to the finite geometry we verify the robustness of the corner states and also achieve a strain-controlled variation of the corner charge magnitude.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.