{"title":"Cancelable face recognition using phase retrieval and complex principal component analysis network","authors":"Zhuhong Shao, Leding Li, Zuowei Zhang, Bicao Li, Xilin Liu, Yuanyuan Shang, Bin Chen","doi":"10.1007/s00138-023-01496-x","DOIUrl":null,"url":null,"abstract":"<p>Considering the necessity of sensitive information protection in face image, a cancelable template generation model for multimodal face images is proposed in this paper. Firstly, the visual meaningful face images are transformed into phase-only functions through phase retrieval in gyrator domain. Then random projection and chaotic-based mask are constituted into modulation for achieving revocability and distinguishability. The interim results are mapped to a higher-dimensional space using random Fourier features. Followed by two-stage complex-valued principal component analysis, the convolutional filters are learned efficiently. Together with binary hashing and decimal coding, local histogram features are obtained and forwarded to SVM for training and recognition. Experiments performed on three publicly multimodal datasets demonstrate that the proposed algorithm can obtain higher accuracy, precision, recall and F-score in comparison with some existing algorithms while the templates are non-invertible and easy to revoke.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"150 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-023-01496-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the necessity of sensitive information protection in face image, a cancelable template generation model for multimodal face images is proposed in this paper. Firstly, the visual meaningful face images are transformed into phase-only functions through phase retrieval in gyrator domain. Then random projection and chaotic-based mask are constituted into modulation for achieving revocability and distinguishability. The interim results are mapped to a higher-dimensional space using random Fourier features. Followed by two-stage complex-valued principal component analysis, the convolutional filters are learned efficiently. Together with binary hashing and decimal coding, local histogram features are obtained and forwarded to SVM for training and recognition. Experiments performed on three publicly multimodal datasets demonstrate that the proposed algorithm can obtain higher accuracy, precision, recall and F-score in comparison with some existing algorithms while the templates are non-invertible and easy to revoke.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.