Nanomaterial-based methods for sepsis management

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Iraj Alipourfard , Mohammad Darvishi , Arghavan khalighfard , Farhood Ghazi , Ahmad Mobed
{"title":"Nanomaterial-based methods for sepsis management","authors":"Iraj Alipourfard ,&nbsp;Mohammad Darvishi ,&nbsp;Arghavan khalighfard ,&nbsp;Farhood Ghazi ,&nbsp;Ahmad Mobed","doi":"10.1016/j.enzmictec.2023.110380","DOIUrl":null,"url":null,"abstract":"<div><p>Sepsis is a serious disease caused by an impaired host immune response to infection, resulting in organ dysfunction, tissue damage and is responsible for high in-hospital mortality (approximately 20%). Recently, WHO documented sepsis as a global health priority. Nevertheless, there is still no effective and specific therapy for clinically detecting sepsis. Nanomaterial-based approaches have appeared as promising tools for identifying bacterial infections. In this review, recent biosensors are introduced and summarized as nanomaterial-based platforms for sepsis management and severe complications. Biosensors can be used as tools for the diagnosis and treatment of sepsis and as nanocarriers for drug delivery. In general, diagnostic methods for sepsis-associated bacteria, biosensors developed for this purpose are presented in detail, and their strengths and weaknesses are discussed. In other words, readers of this article will gain a comprehensive understanding of biosensors and their applications in sepsis management.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022923001886","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis is a serious disease caused by an impaired host immune response to infection, resulting in organ dysfunction, tissue damage and is responsible for high in-hospital mortality (approximately 20%). Recently, WHO documented sepsis as a global health priority. Nevertheless, there is still no effective and specific therapy for clinically detecting sepsis. Nanomaterial-based approaches have appeared as promising tools for identifying bacterial infections. In this review, recent biosensors are introduced and summarized as nanomaterial-based platforms for sepsis management and severe complications. Biosensors can be used as tools for the diagnosis and treatment of sepsis and as nanocarriers for drug delivery. In general, diagnostic methods for sepsis-associated bacteria, biosensors developed for this purpose are presented in detail, and their strengths and weaknesses are discussed. In other words, readers of this article will gain a comprehensive understanding of biosensors and their applications in sepsis management.

Abstract Image

基于纳米材料的败血症治疗方法
败血症是一种严重疾病,由宿主对感染的免疫反应受损引起,导致器官功能障碍和组织损伤,并造成较高的院内死亡率(约 20%)。最近,世卫组织将败血症列为全球健康优先事项。然而,目前仍没有有效的特异性疗法来临床检测败血症。基于纳米材料的方法已成为识别细菌感染的有前途的工具。在这篇综述中,介绍并总结了最新的生物传感器,并将其作为败血症管理和严重并发症的纳米材料平台。生物传感器可用作诊断和治疗败血症的工具,也可用作给药的纳米载体。总体而言,本文详细介绍了败血症相关细菌的诊断方法和为此开发的生物传感器,并讨论了它们的优缺点。换句话说,这篇文章的读者将对生物传感器及其在败血症治疗中的应用有一个全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信