Displacement of PAMAM-Au via acoustic streaming on an electrochemical immunosensing platform

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Noor Syamila, Amir Syahir Amir Hamzah, Thomas Laurell, Yusran Sulaiman, Shinya Ikeno, Wen Siang Tan, Asilah Ahmad Tajudin
{"title":"Displacement of PAMAM-Au via acoustic streaming on an electrochemical immunosensing platform","authors":"Noor Syamila, Amir Syahir Amir Hamzah, Thomas Laurell, Yusran Sulaiman, Shinya Ikeno, Wen Siang Tan, Asilah Ahmad Tajudin","doi":"10.1088/1361-6439/ad0e42","DOIUrl":null,"url":null,"abstract":"The displacement of an electroactive monitoring agent, i.e., polyamidoamine dendrimers encapsulated gold nanoparticles (PAMAM-Au) upon the presence of a target antibody via acoustic streaming has been studied. Acoustic streaming has been used to improve the mass transfer and reduce the sample incubation rate, thus this study investigated its ability in enhancing the PAMAM-Au displacement efficiency of our immunosensor. For this purpose, the bio-nanogate components of maltose-binding protein carrying the antigenic determinant (MBP-aD) of hepatitis B surface antigen (HBsAg) as a bioreceptor was functionalized, followed by the monitoring agent i.e. PAMAM-Au on the electrode prior to the incubation with targeted anti-hepatitis B surface antigen (anti-HBsAg) antibody. The modified electrode was then coupled with a piezotransducer and connected to the signal transducer to induce acoustic streaming upon sample incubation. Under optimal acoustic actuation, the sample incubation time has been reduced from 20 min to 8 min via the enhancement of PAMAM-Au displacement induced by acoustic streaming. The result also demonstrated that the specificity and selectivity of the sensing platform under acoustic actuation are comparable to the static incubation in detecting the targeted antibody.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"40 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad0e42","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The displacement of an electroactive monitoring agent, i.e., polyamidoamine dendrimers encapsulated gold nanoparticles (PAMAM-Au) upon the presence of a target antibody via acoustic streaming has been studied. Acoustic streaming has been used to improve the mass transfer and reduce the sample incubation rate, thus this study investigated its ability in enhancing the PAMAM-Au displacement efficiency of our immunosensor. For this purpose, the bio-nanogate components of maltose-binding protein carrying the antigenic determinant (MBP-aD) of hepatitis B surface antigen (HBsAg) as a bioreceptor was functionalized, followed by the monitoring agent i.e. PAMAM-Au on the electrode prior to the incubation with targeted anti-hepatitis B surface antigen (anti-HBsAg) antibody. The modified electrode was then coupled with a piezotransducer and connected to the signal transducer to induce acoustic streaming upon sample incubation. Under optimal acoustic actuation, the sample incubation time has been reduced from 20 min to 8 min via the enhancement of PAMAM-Au displacement induced by acoustic streaming. The result also demonstrated that the specificity and selectivity of the sensing platform under acoustic actuation are comparable to the static incubation in detecting the targeted antibody.
在电化学免疫传感平台上通过声流实现 PAMAM-Au 的位移
我们研究了目标抗体存在时,电活性监测剂(即聚酰胺胺树枝形分子包裹的金纳米粒子(PAMAM-Au))通过声流发生位移的情况。声流已被用于改善传质和降低样品孵育率,因此本研究调查了声流在提高我们的免疫传感器的 PAMAM-Au 置换效率方面的能力。为此,先将携带乙型肝炎表面抗原(HBsAg)抗原决定簇(MBP-aD)的麦芽糖结合蛋白作为生物受体的生物纳米凝胶成分功能化,然后将监测剂(即 PAMAM-Au)置于电极上,再与靶向抗乙型肝炎表面抗原(抗 HBsAg)抗体孵育。然后将改良电极与压电传感器耦合并连接到信号转换器,以便在样品孵育时诱导声流。在最佳声驱动条件下,通过声流诱导 PAMAM-Au 位移的增强,样品孵育时间从 20 分钟缩短到 8 分钟。研究结果还表明,在检测靶向抗体方面,声驱动传感平台的特异性和选择性与静态孵育相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信