Weak and parabolic solutions of advection–diffusion equations with rough velocity field

IF 1.1 3区 数学 Q1 MATHEMATICS
Paolo Bonicatto, Gennaro Ciampa, Gianluca Crippa
{"title":"Weak and parabolic solutions of advection–diffusion equations with rough velocity field","authors":"Paolo Bonicatto, Gennaro Ciampa, Gianluca Crippa","doi":"10.1007/s00028-023-00919-6","DOIUrl":null,"url":null,"abstract":"<p>We study the Cauchy problem for the advection–diffusion equation <span>\\(\\partial _t u + {{\\,\\mathrm{\\textrm{div}}\\,}}(u\\varvec{b}) = \\Delta u\\)</span> associated with a merely integrable divergence-free vector field <span>\\(\\varvec{b}\\)</span> defined on the torus. We discuss existence, regularity and uniqueness results for distributional and parabolic solutions, in different regimes of integrability both for the vector field and for the initial datum. We offer an up-to-date picture of the available results scattered in the literature, and we include some original proofs. We also propose some open problems, motivated by very recent results which show ill-posedness of the equation in certain regimes of integrability via convex integration schemes.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00919-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Cauchy problem for the advection–diffusion equation \(\partial _t u + {{\,\mathrm{\textrm{div}}\,}}(u\varvec{b}) = \Delta u\) associated with a merely integrable divergence-free vector field \(\varvec{b}\) defined on the torus. We discuss existence, regularity and uniqueness results for distributional and parabolic solutions, in different regimes of integrability both for the vector field and for the initial datum. We offer an up-to-date picture of the available results scattered in the literature, and we include some original proofs. We also propose some open problems, motivated by very recent results which show ill-posedness of the equation in certain regimes of integrability via convex integration schemes.

Abstract Image

具有粗糙速度场的平流扩散方程的弱解和抛物线解
我们研究了平流-扩散方程 \(\partial _t u + {{\,\mathrm\textrm{div}}\,}}(u\varvec{b}) = \Delta u\) 的考奇问题,该方程与环上定义的单纯可积分无发散向量场 \(\varvec{b}\)相关。我们讨论了分布解和抛物线解的存在性、正则性和唯一性结果,以及矢量场和初始基准的不同可积分状态。我们提供了散见于文献中的现有结果的最新情况,并包括一些原创证明。我们还提出了一些有待解决的问题,这些问题是受最新结果的启发而提出的,这些结果通过凸积分方案显示了方程在某些可整性状态下的非求解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信