Towards non-iterative calculation of the zeros of the Riemann zeta function

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yu. Matiyasevich
{"title":"Towards non-iterative calculation of the zeros of the Riemann zeta function","authors":"Yu. Matiyasevich","doi":"10.1016/j.ic.2023.105130","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a family of rational functions <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> with the following property. Let <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> be equal respectively to the value of some function <span><math><mi>f</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> and the values of its first <em>N</em> derivatives calculated at a certain complex number <em>a</em> lying not too far from a zero <em>ρ</em> of this function. It is <em>expected</em> that the value of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> is very close to <em>ρ</em>.</p><p><span>We demonstrate this phenomenon on several numerical instances with the Riemann zeta function in the role of </span><span><math><mi>f</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span>. For example, for <span><math><mi>N</mi><mo>=</mo><mn>10</mn></math></span> and <span><math><mi>a</mi><mo>=</mo><mn>0.6</mn><mo>+</mo><mn>14</mn><mi>i</mi></math></span> we have <span><math><mo>|</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>)</mo><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>&lt;</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>18</mn></mrow></msup></math></span> where <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0.5</mn><mo>+</mo><mn>14.13</mn><mo>.</mo><mo>.</mo><mo>.</mo><mi>i</mi></math></span> is the first non-trivial zeta zero.</p><p>Also we define rational functions <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> which (under the same assumptions) have values which are very close to <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>ρ</mi></mrow></msup></math></span><span>, that is, to the terms from the Dirichlet series for the zeta function calculated at its zero.</span></p><p>In the case when <em>a</em> is between two consecutive zeros, say <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, functions <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> approximate neither of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi></mrow></msub></mrow></msup></math></span> no <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></msup></math></span>; nevertheless, they allow us to approximate the sum <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></msup></math></span> and the product <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi></mrow></msub></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></msup></math></span> and hence to calculate both <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi></mrow></msub></mrow></msup></math></span> and <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></msup></math></span><span> by solving corresponding quadratic equation.</span></p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"296 ","pages":"Article 105130"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540123001335","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a family of rational functions RN(a,d0,d1,,dN) with the following property. Let d0,d1,,dN be equal respectively to the value of some function f(s) and the values of its first N derivatives calculated at a certain complex number a lying not too far from a zero ρ of this function. It is expected that the value of RN(a,d0,d1,,dN) is very close to ρ.

We demonstrate this phenomenon on several numerical instances with the Riemann zeta function in the role of f(s). For example, for N=10 and a=0.6+14i we have |R10(a,d0,d1,,d10)ρ1|<1018 where ρ1=0.5+14.13...i is the first non-trivial zeta zero.

Also we define rational functions RN,n(a,d0,d1,,dN) which (under the same assumptions) have values which are very close to nρ, that is, to the terms from the Dirichlet series for the zeta function calculated at its zero.

In the case when a is between two consecutive zeros, say ρl and ρl+1, functions RN,n(a,d0,d1,,dN) approximate neither of nρl no nρl+1; nevertheless, they allow us to approximate the sum nρl+nρl+1 and the product nρlnρl+1 and hence to calculate both nρl and nρl+1 by solving corresponding quadratic equation.

实现黎曼zeta函数零点的非迭代计算
我们引入具有以下性质的有理函数族 RN(a,d0,d1,...,dN)。设 d0,d1,...,dN分别等于某个函数f(s)的值及其前 N 个导数的值,这些导数是在离该函数零点 ρ 不远的某个复数 a 处计算得出的。我们用黎曼zeta函数扮演f(s)的角色,在几个数值实例中证明了这一现象。例如,对于 N=10,a=0.6+14i,我们有 |R10(a,d0,d1,...,d10)-ρ1|<10-18,其中 ρ1=0.5+14.13...i 是第一个非三维的 zeta 零点。此外,我们还定义了有理函数 RN,n(a,d0,d1,...,dN),这些函数(在相同的假设条件下)的值非常接近 n-ρ,也就是说,与在零点处计算的 zeta 函数的 Dirichlet 级数的项非常接近。当 a 位于两个连续零点(如 ρl 和 ρl+1 )之间时,函数 RN,n(a,d0,d1,...,dN) 既不能近似 n-ρl 也不能近似 n-ρl+1;不过,它们允许我们近似求和 n-ρl+n-ρl+1 以及乘积 n-ρln-ρl+1,从而通过求解相应的二次方程计算 n-ρl 和 n-ρl+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信