The geometry of risk adjustments

IF 1.4 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS
Hans-Peter Bermin, Magnus Holm
{"title":"The geometry of risk adjustments","authors":"Hans-Peter Bermin, Magnus Holm","doi":"10.1007/s10203-023-00421-1","DOIUrl":null,"url":null,"abstract":"<p>We present a geometric approach to portfolio theory with a focus on risk-adjusted returns, in particular Jensen’s alpha. We find that while the alpha/beta approach has severe limitations, especially in higher dimensions, only minor conceptual modifications (e.g., using orthogonal Sharpe ratios rather than risk-adjusted returns) are needed to identify the efficient trading strategies. We further show that, in a complete market, the so-called market price of risk vector is identical to the growth optimal Kelly vector, albeit expressed in coordinates of a different basis. This implies that a derivative, having an orthogonal Sharpe ratio of zero, has a price given by the minimal martingale measure.</p>","PeriodicalId":43711,"journal":{"name":"Decisions in Economics and Finance","volume":"5 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decisions in Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10203-023-00421-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a geometric approach to portfolio theory with a focus on risk-adjusted returns, in particular Jensen’s alpha. We find that while the alpha/beta approach has severe limitations, especially in higher dimensions, only minor conceptual modifications (e.g., using orthogonal Sharpe ratios rather than risk-adjusted returns) are needed to identify the efficient trading strategies. We further show that, in a complete market, the so-called market price of risk vector is identical to the growth optimal Kelly vector, albeit expressed in coordinates of a different basis. This implies that a derivative, having an orthogonal Sharpe ratio of zero, has a price given by the minimal martingale measure.

Abstract Image

风险调整的几何形状
我们提出了一种投资组合理论的几何方法,重点是风险调整收益,特别是詹森阿尔法。我们发现,虽然阿尔法/贝塔方法有严重的局限性,尤其是在更高的维度上,但只需在概念上稍作修改(如使用正交夏普比率而非风险调整收益率),就能确定有效的交易策略。我们进一步证明,在一个完整的市场中,所谓的市场风险价格向量与增长最优凯利向量是相同的,尽管是用不同基础的坐标来表示。这意味着,正交夏普比率为零的导数,其价格由最小马氏计量法给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decisions in Economics and Finance
Decisions in Economics and Finance SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
2.50
自引率
9.10%
发文量
10
期刊介绍: Decisions in Economics and Finance: A Journal of Applied Mathematics is the official publication of the Association for Mathematics Applied to Social and Economic Sciences (AMASES). It provides a specialised forum for the publication of research in all areas of mathematics as applied to economics, finance, insurance, management and social sciences. Primary emphasis is placed on original research concerning topics in mathematics or computational techniques which are explicitly motivated by or contribute to the analysis of economic or financial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信