Sphere bundle over the set of inner products in a Hilbert space

IF 0.6 4区 数学 Q3 MATHEMATICS
E. Andruchow , M.E. Di Iorio y Lucero
{"title":"Sphere bundle over the set of inner products in a Hilbert space","authors":"E. Andruchow ,&nbsp;M.E. Di Iorio y Lucero","doi":"10.1016/j.difgeo.2023.102092","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mo>(</mo><mi>H</mi><mo>,</mo><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo><mo>)</mo></math></span><span> be a complex Hilbert space and </span><span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span><span> the space of bounded linear operators in </span><span><math><mi>H</mi></math></span>. Any other equivalent inner product in <span><math><mi>H</mi></math></span> is of the form <span><math><msub><mrow><mo>〈</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>〉</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mo>〈</mo><mi>A</mi><mi>f</mi><mo>,</mo><mi>g</mi><mo>〉</mo></math></span> (<span><math><mi>f</mi><mo>,</mo><mi>g</mi><mo>∈</mo><mi>H</mi></math></span>) for some positive invertible operator <span><math><mi>A</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. In this paper we study the bundle <span><math><mi>M</mi></math></span> which consist of the unit sphere <span><math><mo>{</mo><mi>f</mi><mo>∈</mo><mi>H</mi><mo>:</mo><msub><mrow><mo>〈</mo><mi>f</mi><mo>,</mo><mi>f</mi><mo>〉</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>}</mo></math></span> over each (equivalent) inner product <span><math><msub><mrow><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo></mrow><mrow><mi>A</mi></mrow></msub></math></span>, which due to the observation above can be defined<span><span><span><math><mi>M</mi><mo>=</mo><mo>{</mo><mo>(</mo><mi>A</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>∈</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>×</mo><mi>H</mi><mo>:</mo><mi>A</mi><mtext> is positive and invertible and </mtext><mo>〈</mo><mi>A</mi><mi>f</mi><mo>,</mo><mi>f</mi><mo>〉</mo><mo>=</mo><mn>1</mn><mo>}</mo><mo>.</mo></math></span></span></span> We prove that <span><math><mi>M</mi></math></span><span><span> is a complemented submanifold of the </span>Banach space </span><span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>×</mo><mi>H</mi></math></span><span> and a homogeneous space of the Banach-Lie group </span><span><math><mi>G</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>⊂</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of invertible operators. We introduce a reductive structure in <span><math><mi>M</mi></math></span><span>, and study properties of the geodesics of the linear connection induced by this reductive structure. We consider certain submanifolds of </span><span><math><mi>M</mi></math></span>, for instance, the one obtained when the positive elements <em>A</em> describing the inner products lie in a prescribed C<sup>⁎</sup>-algebra <span><math><mi>A</mi><mo>⊂</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102092"},"PeriodicalIF":0.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001183","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (H,,) be a complex Hilbert space and B(H) the space of bounded linear operators in H. Any other equivalent inner product in H is of the form f,gA=Af,g (f,gH) for some positive invertible operator AB(H). In this paper we study the bundle M which consist of the unit sphere {fH:f,fA=1} over each (equivalent) inner product ,A, which due to the observation above can be definedM={(A,f)B(H)×H:A is positive and invertible and Af,f=1}. We prove that M is a complemented submanifold of the Banach space B(H)×H and a homogeneous space of the Banach-Lie group G(H)B(H) of invertible operators. We introduce a reductive structure in M, and study properties of the geodesics of the linear connection induced by this reductive structure. We consider certain submanifolds of M, for instance, the one obtained when the positive elements A describing the inner products lie in a prescribed C-algebra AB(H).

希尔伯特空间内积集合上的球体束
设(H,〈,〉)为复希尔伯特空间,B(H)为 H 中的有界线性算子空间。对于某个正向可逆算子 A∈B(H),H 中任何其他等价内积的形式为〈f,g〉A=〈Af,g〉 (f,g∈H)。本文研究由单位球{f∈H:〈f,f〉A=1}在每个(等价)内积〈,〉A上构成的束 M,根据上述观察,可以定义M={(A,f)∈B(H)×H:A为正且可逆且〈Af,f〉=1}。我们证明 M 是巴纳赫空间 B(H)×H 的补集子漫空间,也是可反算子的巴纳赫-李群 G(H)⊂B(H) 的同调空间。我们在 M 中引入了还原结构,并研究了该还原结构诱导的线性连接的大地线性质。我们考虑 M 的某些子曲面,例如,当描述内积的正元素 A 位于规定的 C⁎-代数 A⊂B(H)中时得到的曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信