Structural and universal completeness in algebra and logic

IF 0.6 2区 数学 Q2 LOGIC
Paolo Aglianò , Sara Ugolini
{"title":"Structural and universal completeness in algebra and logic","authors":"Paolo Aglianò ,&nbsp;Sara Ugolini","doi":"10.1016/j.apal.2023.103391","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we study the notions of structural and universal completeness both from the algebraic and logical point of view. In particular, we provide new algebraic characterizations of quasivarieties that are actively and passively universally complete, and passively structurally complete. We apply these general results to varieties of bounded lattices and to quasivarieties related to substructural logics. In particular we show that a substructural logic satisfying weakening is passively structurally complete if and only if every classical contradiction is explosive in it. Moreover, we fully characterize the passively structurally complete varieties of <span><math><mi>MTL</mi></math></span>-algebras, i.e., bounded commutative integral residuated lattices generated by chains.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 3","pages":"Article 103391"},"PeriodicalIF":0.6000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168007223001483/pdfft?md5=566d39a3ec46ed86a39bb7490723fd1b&pid=1-s2.0-S0168007223001483-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223001483","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study the notions of structural and universal completeness both from the algebraic and logical point of view. In particular, we provide new algebraic characterizations of quasivarieties that are actively and passively universally complete, and passively structurally complete. We apply these general results to varieties of bounded lattices and to quasivarieties related to substructural logics. In particular we show that a substructural logic satisfying weakening is passively structurally complete if and only if every classical contradiction is explosive in it. Moreover, we fully characterize the passively structurally complete varieties of MTL-algebras, i.e., bounded commutative integral residuated lattices generated by chains.

代数和逻辑中的结构完备性和普遍完备性
在这项研究中,我们从代数和逻辑的角度研究了结构完备性和普遍完备性的概念。特别是,我们提供了主动和被动普遍完备性以及被动结构完备性准变元的新代数特征。我们将这些一般性结果应用于有界网格的变体以及与子结构逻辑相关的准变体。特别是,我们证明了满足弱化的子结构逻辑是被动结构完备的,当且仅当每一个经典矛盾在其中都是爆炸性的。此外,我们还充分描述了 MTL-代数的被动结构完备性变种,即由链生成的有界交换积分残差格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信